Design and Implementation of Linear and Nonlinear Feedforward Controllers for High-Performance Power Factor Corrected Circuits

IF 1.7 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Tian-Hua Liu, Yu-Cheng Song, Woei-Luen Chen
{"title":"Design and Implementation of Linear and Nonlinear Feedforward Controllers for High-Performance Power Factor Corrected Circuits","authors":"Tian-Hua Liu,&nbsp;Yu-Cheng Song,&nbsp;Woei-Luen Chen","doi":"10.1049/pel2.70010","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the design and implementation of a linear feedforward controller, which creates the compensation duty cycle near zero-voltage crossing points for the power factor corrected (PFC) circuits, and a nonlinear feedforward controller, which is developed by using a linearization model of the high-performance PFC circuits. These two control approaches are proposed, compared and analysed. To address the discontinuous current near the zero-crossing point, two extra feedforward compensators with specific parameters are designed to refine the duty cycles of the switching devices. Experimental results and analytical results show that the proposed methods can provide a wider frequency range and flatter gain for the closed-loop PFC system. Furthermore, the proposed control methods have quicker recovery times and smaller voltage drops at the direct current (DC) output voltage than the traditional control method when the PFC is operated at a repetitive switching resistance load. Control algorithms were implemented and tested on a digital signal processor-based PFC circuit, which is a 500 W prototype with a single-phase alternating current input of 110 V and a DC output of 300 V to validate the feasibility and effectiveness of the proposed methods. Experimental results demonstrate that these feedforward control methods are superior to traditional proportional integral controllers, offering an improved input power factor, reduced harmonic currents, better performance under a repetitive switching resistance load and more straightforward implementation.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"18 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.70010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.70010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the design and implementation of a linear feedforward controller, which creates the compensation duty cycle near zero-voltage crossing points for the power factor corrected (PFC) circuits, and a nonlinear feedforward controller, which is developed by using a linearization model of the high-performance PFC circuits. These two control approaches are proposed, compared and analysed. To address the discontinuous current near the zero-crossing point, two extra feedforward compensators with specific parameters are designed to refine the duty cycles of the switching devices. Experimental results and analytical results show that the proposed methods can provide a wider frequency range and flatter gain for the closed-loop PFC system. Furthermore, the proposed control methods have quicker recovery times and smaller voltage drops at the direct current (DC) output voltage than the traditional control method when the PFC is operated at a repetitive switching resistance load. Control algorithms were implemented and tested on a digital signal processor-based PFC circuit, which is a 500 W prototype with a single-phase alternating current input of 110 V and a DC output of 300 V to validate the feasibility and effectiveness of the proposed methods. Experimental results demonstrate that these feedforward control methods are superior to traditional proportional integral controllers, offering an improved input power factor, reduced harmonic currents, better performance under a repetitive switching resistance load and more straightforward implementation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Power Electronics
IET Power Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
5.50
自引率
10.00%
发文量
195
审稿时长
5.1 months
期刊介绍: IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes: Applications: Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances. Technologies: Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies. Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials. Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems. Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques. Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material. Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest. Special Issues. Current Call for papers: Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信