Astaxanthin Inhibits Ferroptosis of Hippocampal Neurons in Kainic Acid-Induced Epileptic Mice by Activating the Nrf2/GPX4 Signaling Pathway

IF 4.8 1区 医学 Q1 NEUROSCIENCES
Shihao Chen, Linqian Zhao, Xing Jin, Qichang Liu, Yuqing Xiao, Huiqin Xu
{"title":"Astaxanthin Inhibits Ferroptosis of Hippocampal Neurons in Kainic Acid-Induced Epileptic Mice by Activating the Nrf2/GPX4 Signaling Pathway","authors":"Shihao Chen,&nbsp;Linqian Zhao,&nbsp;Xing Jin,&nbsp;Qichang Liu,&nbsp;Yuqing Xiao,&nbsp;Huiqin Xu","doi":"10.1111/cns.70238","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Epilepsy, a prevalent neurological disorder, is distinguished by episodic abnormal discharges of neurons within the brain, resulting in transient brain dysfunction. Prior research has identified a novel form of cell death termed ferroptosis, which is intricately linked to the initiation and progression of epilepsy. It has been demonstrated that astaxanthin (AST) can inhibit ferroptosis by enhancing the activity of nuclear factor erythroid 2-related factor 2 (Nrf2), thereby providing cytoprotection. Therefore, this study aims to investigate whether AST can alleviate neuronal ferroptosis in epilepsy by activating the Nrf2/GPX4 pathway, thereby exerting a neuroprotective effect.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>By constructing a kainic acid (KA)-induced epilepsy mouse model and a KA-induced HT22 cell model, we employed behavioral testing, Western blot analysis, quantitative real-time reverse transcription qRT-PCR, ferroptosis-related assay kits, immunofluorescence staining, and other methods. These methodologies were utilized to investigate the protective effects and underlying mechanisms of AST on ferroptosis in KA-induced epileptic mice and HT22 neurons.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Our results demonstrate that AST pretreatment alleviates KA-induced epileptic behaviors and cognitive impairments in mice and mitigates ferroptosis indicators such as lipid peroxidation and mitochondrial morphological alterations. This neuroprotective effect appears to be mediated by the activation of the Nrf2/GPX4 signaling axis. In vitro studies further revealed that AST confers neuroprotection against KA-induced HT22 neuronal cell death, an effect that is abrogated by an Nrf2 inhibitor. Hence, the neuroprotective properties of AST are significantly associated with the modulation of the Nrf2-mediated ferroptosis pathway, as corroborated by bioinformatics analyses.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The AST effectively inhibits neuronal ferroptosis in both in vivo and in vitro epilepsy models via the Nrf2/GPX4 pathway. This finding suggests that AST holds promise as a potential therapeutic agent for the treatment of epilepsy.</p>\n </section>\n </div>","PeriodicalId":154,"journal":{"name":"CNS Neuroscience & Therapeutics","volume":"31 2","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cns.70238","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS Neuroscience & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cns.70238","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Epilepsy, a prevalent neurological disorder, is distinguished by episodic abnormal discharges of neurons within the brain, resulting in transient brain dysfunction. Prior research has identified a novel form of cell death termed ferroptosis, which is intricately linked to the initiation and progression of epilepsy. It has been demonstrated that astaxanthin (AST) can inhibit ferroptosis by enhancing the activity of nuclear factor erythroid 2-related factor 2 (Nrf2), thereby providing cytoprotection. Therefore, this study aims to investigate whether AST can alleviate neuronal ferroptosis in epilepsy by activating the Nrf2/GPX4 pathway, thereby exerting a neuroprotective effect.

Methods

By constructing a kainic acid (KA)-induced epilepsy mouse model and a KA-induced HT22 cell model, we employed behavioral testing, Western blot analysis, quantitative real-time reverse transcription qRT-PCR, ferroptosis-related assay kits, immunofluorescence staining, and other methods. These methodologies were utilized to investigate the protective effects and underlying mechanisms of AST on ferroptosis in KA-induced epileptic mice and HT22 neurons.

Results

Our results demonstrate that AST pretreatment alleviates KA-induced epileptic behaviors and cognitive impairments in mice and mitigates ferroptosis indicators such as lipid peroxidation and mitochondrial morphological alterations. This neuroprotective effect appears to be mediated by the activation of the Nrf2/GPX4 signaling axis. In vitro studies further revealed that AST confers neuroprotection against KA-induced HT22 neuronal cell death, an effect that is abrogated by an Nrf2 inhibitor. Hence, the neuroprotective properties of AST are significantly associated with the modulation of the Nrf2-mediated ferroptosis pathway, as corroborated by bioinformatics analyses.

Conclusion

The AST effectively inhibits neuronal ferroptosis in both in vivo and in vitro epilepsy models via the Nrf2/GPX4 pathway. This finding suggests that AST holds promise as a potential therapeutic agent for the treatment of epilepsy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CNS Neuroscience & Therapeutics
CNS Neuroscience & Therapeutics 医学-神经科学
CiteScore
7.30
自引率
12.70%
发文量
240
审稿时长
2 months
期刊介绍: CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews and reports of novel findings of therapeutic relevance to the central nervous system, as well as papers related to clinical pharmacology, drug development and novel methodologies for drug evaluation. The journal focuses on neurological and psychiatric diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, depression, schizophrenia, epilepsy, and drug abuse.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信