Effect of Surface Properties of Chitosan-Based Nanoparticles in the Skin-Diffusion Rate

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biopolymers Pub Date : 2025-02-17 DOI:10.1002/bip.70006
Luciana Ramírez, David Corral, Itandehui Betanzo, Deyanira Rodarte, Kanchan Chauhan, Rafael Vazquez-Duhalt
{"title":"Effect of Surface Properties of Chitosan-Based Nanoparticles in the Skin-Diffusion Rate","authors":"Luciana Ramírez,&nbsp;David Corral,&nbsp;Itandehui Betanzo,&nbsp;Deyanira Rodarte,&nbsp;Kanchan Chauhan,&nbsp;Rafael Vazquez-Duhalt","doi":"10.1002/bip.70006","DOIUrl":null,"url":null,"abstract":"<p>Skin diseases may cause rash, inflammation, itchiness, and other important skin changes, including dysplasia. Some skin conditions may be due to genetic and lifestyle factors and immune-mediated factors. The current skin disease treatment can include oral medication, topical cream, or ointments. Nanotechnology is revolutionizing the drug delivery systems, increasing the time life of active therapeutic compounds and improving the treatment efficiency. This work hypothesizes that varying the surface properties of chitosan nanoparticles (Ch-NPs) can modulate their diffusion through dermal tissue. Thus, Ch-NPs were synthesized, and their surface was modified with polyethylene glycol, oxalic acid, and linoleic acid for transdermal therapy. The different Ch-NPs were labeled with a fluorophore, and the dermal diffusion was measured on human skin by histological preparations and fluorescent microscopy. The surface properties of nanoparticles were shown to play an essential role in skin diffusion rate. Surface modification with a lipophilic moiety such as linoleic fatty acid showed a diffusion rate of 7.23 mm<sup>2</sup>/h in human full-thickness abdominal flap, which is 2.7 times faster nanoparticle diffusion through dermal tissue when compared with the unmodified Ch-NPs (2.92 mm<sup>2</sup>/h). The positive (zeta potential +27.5 mV) or negative (zeta potential −2.2 mV) surface charge does not affect the chitosan nanoparticle diffusion. Polyethylene glycol surface modification slightly improved the nanoparticle diffusion rate (3.63 mm<sup>2</sup>/h). Thus, modulating the nanoparticle surface properties can control the skin diffusion rate. The implications of this finding on dermic drug delivery are discussed.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"116 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bip.70006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.70006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Skin diseases may cause rash, inflammation, itchiness, and other important skin changes, including dysplasia. Some skin conditions may be due to genetic and lifestyle factors and immune-mediated factors. The current skin disease treatment can include oral medication, topical cream, or ointments. Nanotechnology is revolutionizing the drug delivery systems, increasing the time life of active therapeutic compounds and improving the treatment efficiency. This work hypothesizes that varying the surface properties of chitosan nanoparticles (Ch-NPs) can modulate their diffusion through dermal tissue. Thus, Ch-NPs were synthesized, and their surface was modified with polyethylene glycol, oxalic acid, and linoleic acid for transdermal therapy. The different Ch-NPs were labeled with a fluorophore, and the dermal diffusion was measured on human skin by histological preparations and fluorescent microscopy. The surface properties of nanoparticles were shown to play an essential role in skin diffusion rate. Surface modification with a lipophilic moiety such as linoleic fatty acid showed a diffusion rate of 7.23 mm2/h in human full-thickness abdominal flap, which is 2.7 times faster nanoparticle diffusion through dermal tissue when compared with the unmodified Ch-NPs (2.92 mm2/h). The positive (zeta potential +27.5 mV) or negative (zeta potential −2.2 mV) surface charge does not affect the chitosan nanoparticle diffusion. Polyethylene glycol surface modification slightly improved the nanoparticle diffusion rate (3.63 mm2/h). Thus, modulating the nanoparticle surface properties can control the skin diffusion rate. The implications of this finding on dermic drug delivery are discussed.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信