The Effects of Vitamin D on Muscle Strength Are Influenced by Testosterone Levels

IF 9.4 1区 医学 Q1 GERIATRICS & GERONTOLOGY
Aolin Yang, Qingqing Lv, Ziyu Han, Shimiao Dai, Yao Li, Mengru Hao, Ruirui Yu, Junying Zhu, Chenggang Yang, Zhan Shi, Ji-Chang Zhou
{"title":"The Effects of Vitamin D on Muscle Strength Are Influenced by Testosterone Levels","authors":"Aolin Yang,&nbsp;Qingqing Lv,&nbsp;Ziyu Han,&nbsp;Shimiao Dai,&nbsp;Yao Li,&nbsp;Mengru Hao,&nbsp;Ruirui Yu,&nbsp;Junying Zhu,&nbsp;Chenggang Yang,&nbsp;Zhan Shi,&nbsp;Ji-Chang Zhou","doi":"10.1002/jcsm.13733","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Although the role of vitamin D receptor (VDR) in muscle mass and strength is well established, the effects of vitamin D (VD) on muscle remain controversial due to various factors. Herein, the influence of sex on the effects of VD on muscle function and the underlying reasons was explored.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Male and female <i>Sod1</i> gene knockout (SKO) mice, serving as a model for skeletal muscle atrophy, were treated with the VD active analogue calcipotriol, and RNA sequencing was employed to investigate this potential signalling pathway. The National Health and Nutrition Examination Survey (NHANES) database was utilized to explore whether testosterone affects the correlation between VD and grip strength in human participants. Experiments involving C2C12 cells and castrated male mice subjected to immobilization were conducted to demonstrate the enhancing effects of testosterone on VD function.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In male SKO mice, <i>Vdr</i> expression in the gastrocnemius muscle was positively correlated with grip strength (<i>R</i><sup>2</sup> = 0.4689, <i>p</i> &lt; 0.001), whereas no such correlation was identified in female mice. At 28 weeks of age, both male and female SKO mice exhibited significantly reduced grip strength compared to <i>Sod1</i> wild-type (SWT) mice, and calcipotriol restored grip strength in male SKO mice (SWT-veh: 0.0716 ± 0.0006, SWT-cal: 0.0686 ± 0.0010, SKO-veh: 0.0601 ± 0.0010, SKO-cal: 0.0703 ± 0.0007; <i>p</i> &lt; 0.05). Calcipotriol increased muscle protein synthesis and mitochondrial biogenesis while decreasing inflammation and atrogenes in gastrocnemius muscle of male SKO mice. However, the effect of calcipotriol on muscle was not significant in female SKO mice. Compared to wild-type mice, both male and female SKO mice exhibited reduced levels of 1,25(OH)<sub>2</sub>D<sub>3</sub> due to ROS-induced hepatic CYP3A4 overexpression, thereby excluding the influence of baseline VD levels. The serum 25(OH)D<sub>3</sub> and testosterone interactively affect grip strength in adults (<i>p</i> &lt; 0.05). Using C2C12 cells differentiated into myotubes, testosterone significantly enhanced the inducing effects of VD on VDR, androgen receptor (AR), P-AKT, PGC1α, Beclin1 and LC3B. Calcipotriol improved grip strength in sham-operated mice but had a negligible effect on grip strength in castrated mice. However, a significant improvement in grip strength was observed in castrated mice following testosterone restoration (<i>p</i> &lt; 0.05).</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>This study demonstrates the existence of sex heterogeneity in the effects of VD on muscle and that testosterone enhances the strength and molecular responses to VD. These findings underscore the importance of considering testosterone levels when utilizing VD to enhance muscle strength.</p>\n </section>\n </div>","PeriodicalId":48911,"journal":{"name":"Journal of Cachexia Sarcopenia and Muscle","volume":"16 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcsm.13733","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cachexia Sarcopenia and Muscle","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcsm.13733","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Although the role of vitamin D receptor (VDR) in muscle mass and strength is well established, the effects of vitamin D (VD) on muscle remain controversial due to various factors. Herein, the influence of sex on the effects of VD on muscle function and the underlying reasons was explored.

Methods

Male and female Sod1 gene knockout (SKO) mice, serving as a model for skeletal muscle atrophy, were treated with the VD active analogue calcipotriol, and RNA sequencing was employed to investigate this potential signalling pathway. The National Health and Nutrition Examination Survey (NHANES) database was utilized to explore whether testosterone affects the correlation between VD and grip strength in human participants. Experiments involving C2C12 cells and castrated male mice subjected to immobilization were conducted to demonstrate the enhancing effects of testosterone on VD function.

Results

In male SKO mice, Vdr expression in the gastrocnemius muscle was positively correlated with grip strength (R2 = 0.4689, p < 0.001), whereas no such correlation was identified in female mice. At 28 weeks of age, both male and female SKO mice exhibited significantly reduced grip strength compared to Sod1 wild-type (SWT) mice, and calcipotriol restored grip strength in male SKO mice (SWT-veh: 0.0716 ± 0.0006, SWT-cal: 0.0686 ± 0.0010, SKO-veh: 0.0601 ± 0.0010, SKO-cal: 0.0703 ± 0.0007; p < 0.05). Calcipotriol increased muscle protein synthesis and mitochondrial biogenesis while decreasing inflammation and atrogenes in gastrocnemius muscle of male SKO mice. However, the effect of calcipotriol on muscle was not significant in female SKO mice. Compared to wild-type mice, both male and female SKO mice exhibited reduced levels of 1,25(OH)2D3 due to ROS-induced hepatic CYP3A4 overexpression, thereby excluding the influence of baseline VD levels. The serum 25(OH)D3 and testosterone interactively affect grip strength in adults (p < 0.05). Using C2C12 cells differentiated into myotubes, testosterone significantly enhanced the inducing effects of VD on VDR, androgen receptor (AR), P-AKT, PGC1α, Beclin1 and LC3B. Calcipotriol improved grip strength in sham-operated mice but had a negligible effect on grip strength in castrated mice. However, a significant improvement in grip strength was observed in castrated mice following testosterone restoration (p < 0.05).

Conclusions

This study demonstrates the existence of sex heterogeneity in the effects of VD on muscle and that testosterone enhances the strength and molecular responses to VD. These findings underscore the importance of considering testosterone levels when utilizing VD to enhance muscle strength.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cachexia Sarcopenia and Muscle
Journal of Cachexia Sarcopenia and Muscle MEDICINE, GENERAL & INTERNAL-
CiteScore
13.30
自引率
12.40%
发文量
234
审稿时长
16 weeks
期刊介绍: The Journal of Cachexia, Sarcopenia and Muscle is a peer-reviewed international journal dedicated to publishing materials related to cachexia and sarcopenia, as well as body composition and its physiological and pathophysiological changes across the lifespan and in response to various illnesses from all fields of life sciences. The journal aims to provide a reliable resource for professionals interested in related research or involved in the clinical care of affected patients, such as those suffering from AIDS, cancer, chronic heart failure, chronic lung disease, liver cirrhosis, chronic kidney failure, rheumatoid arthritis, or sepsis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信