Ligand-Driven Electron-Deficient Cobalt Pentlandite Nanocrystals for Efficient Hydrogen Peroxide Electrosynthesis

IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jeong-Hyun Kim, Jeong-Gyu Lee, Chang Seong Kim, Min-Jae Choi
{"title":"Ligand-Driven Electron-Deficient Cobalt Pentlandite Nanocrystals for Efficient Hydrogen Peroxide Electrosynthesis","authors":"Jeong-Hyun Kim,&nbsp;Jeong-Gyu Lee,&nbsp;Chang Seong Kim,&nbsp;Min-Jae Choi","doi":"10.1002/eem2.12848","DOIUrl":null,"url":null,"abstract":"<p>Cobalt pentlandite (Co<sub>9</sub>S<sub>8</sub>) is a promising non-precious catalyst due to its superior oxygen reduction reaction activity and excellent stability. However, its oxygen reduction reaction catalytic activity has traditionally been limited to the four-electron pathway because of strong *OOH intermediate adsorption. In this study, we synthesized electron-deficient Co<sub>9</sub>S<sub>8</sub> nanocrystals with an increased number of Co<sup>3+</sup> states compared to conventional Co<sub>9</sub>S<sub>8</sub>. This was achieved by incorporating a high density of surface ligands in small-sized Co<sub>9</sub>S<sub>8</sub> nanocrystals, which enabled the transition of the electrochemical reduction pathway from four-electron oxygen reduction reaction to two-electron oxygen reduction reaction by decreasing *OOH adsorption strength. As a result, the Co<sup>3+</sup>-enriched Co<sub>9</sub>S<sub>8</sub> nanocrystals exhibited a high onset potential of 0.64 V (vs RHE) for two-electron oxygen reduction reaction, achieving H<sub>2</sub>O<sub>2</sub> selectivity of 70–80% over the potential range from 0.05 to 0.6 V. Additionally, these nanocrystals demonstrated a stable H<sub>2</sub>O<sub>2</sub> electrosynthesis at a rate of 459.12 mmol g<sup>−1</sup> h<sup>−1</sup> with a H<sub>2</sub>O<sub>2</sub> Faradaic efficiency over 90% under alkaline conditions. This study provides insights into nanoscale catalyst design for modulating electrochemical reactions.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 2","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12848","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12848","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cobalt pentlandite (Co9S8) is a promising non-precious catalyst due to its superior oxygen reduction reaction activity and excellent stability. However, its oxygen reduction reaction catalytic activity has traditionally been limited to the four-electron pathway because of strong *OOH intermediate adsorption. In this study, we synthesized electron-deficient Co9S8 nanocrystals with an increased number of Co3+ states compared to conventional Co9S8. This was achieved by incorporating a high density of surface ligands in small-sized Co9S8 nanocrystals, which enabled the transition of the electrochemical reduction pathway from four-electron oxygen reduction reaction to two-electron oxygen reduction reaction by decreasing *OOH adsorption strength. As a result, the Co3+-enriched Co9S8 nanocrystals exhibited a high onset potential of 0.64 V (vs RHE) for two-electron oxygen reduction reaction, achieving H2O2 selectivity of 70–80% over the potential range from 0.05 to 0.6 V. Additionally, these nanocrystals demonstrated a stable H2O2 electrosynthesis at a rate of 459.12 mmol g−1 h−1 with a H2O2 Faradaic efficiency over 90% under alkaline conditions. This study provides insights into nanoscale catalyst design for modulating electrochemical reactions.

Abstract Image

用于高效过氧化氢电合成的配体驱动缺电子钴镍镍矿纳米晶体
钴镍矿(Co9S8)因其优异的氧还原反应活性和优异的稳定性而成为一种很有前途的非贵金属催化剂。然而,由于*OOH中间体的强吸附作用,其氧还原反应的催化活性传统上仅限于四电子途径。在这项研究中,我们合成了缺乏电子的Co9S8纳米晶体,与常规Co9S8相比,Co3+态的数量增加了。这是通过在小尺寸Co9S8纳米晶体中加入高密度的表面配体来实现的,通过降低*OOH的吸附强度,使电化学还原途径从四电子氧还原反应转变为两电子氧还原反应。结果表明,Co3+富集的Co9S8纳米晶体在双电子氧还原反应中表现出0.64 V (vs RHE)的高起始电位,在0.05 ~ 0.6 V的电位范围内实现了70 ~ 80%的H2O2选择性。此外,这些纳米晶体在碱性条件下以459.12 mmol g−1 h−1的速率稳定地电合成H2O2, H2O2法拉第效率超过90%。这项研究为纳米级催化剂的设计提供了见解,以调节电化学反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信