On the use of dental microwear texture analysis to determine aetiology and assess wear of dental tissues for clinical evaluation

IF 1.6 Q4 ENGINEERING, BIOMEDICAL
Peter S. Ungar, Anderson T. Hara
{"title":"On the use of dental microwear texture analysis to determine aetiology and assess wear of dental tissues for clinical evaluation","authors":"Peter S. Ungar,&nbsp;Anderson T. Hara","doi":"10.1049/bsb2.12089","DOIUrl":null,"url":null,"abstract":"<p>Here, we present and synthesise some recent collaborative efforts in our laboratories to establish protocols for using dental microwear texture analysis, originally developed to reconstruct diets of fossil mammals and to aid in the clinical assessment of dental patients today. The idea is to propose a method where polyvinylsiloxane impressions, as used in many dental practices, can be combined with surface texture analysis for a rapid, non-invasive, and inexpensive approach to detect and monitor the progression of tooth wear at fine scales over short durations and help determine causal agents of dental tissue loss. We employed both in vitro experimentation and in vivo analysis for abrasion and erosion of enamel and dentin surfaces. Three-dimensional point clouds of impression surfaces were generated using a scanning confocal profiler and analysed using both standard ISO and scale-sensitive fractal analysis approaches. The authors’ results indicate that texture attributes distinguish sound, abraded, and eroded surfaces. Furthermore, microwear textures can parse erosive tooth wear by the causal pH level and duration of exposure. These and other related studies indicate that dental microwear texture analysis holds potential for determining the aetiology of pathological tooth wear and for the clinical assessment and monitoring of dental patients at risk for excessive dental tissue loss at fine scales over short intervals.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12089","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Here, we present and synthesise some recent collaborative efforts in our laboratories to establish protocols for using dental microwear texture analysis, originally developed to reconstruct diets of fossil mammals and to aid in the clinical assessment of dental patients today. The idea is to propose a method where polyvinylsiloxane impressions, as used in many dental practices, can be combined with surface texture analysis for a rapid, non-invasive, and inexpensive approach to detect and monitor the progression of tooth wear at fine scales over short durations and help determine causal agents of dental tissue loss. We employed both in vitro experimentation and in vivo analysis for abrasion and erosion of enamel and dentin surfaces. Three-dimensional point clouds of impression surfaces were generated using a scanning confocal profiler and analysed using both standard ISO and scale-sensitive fractal analysis approaches. The authors’ results indicate that texture attributes distinguish sound, abraded, and eroded surfaces. Furthermore, microwear textures can parse erosive tooth wear by the causal pH level and duration of exposure. These and other related studies indicate that dental microwear texture analysis holds potential for determining the aetiology of pathological tooth wear and for the clinical assessment and monitoring of dental patients at risk for excessive dental tissue loss at fine scales over short intervals.

Abstract Image

利用牙微磨损织构分析来确定牙组织磨损的病因并进行临床评价
在这里,我们介绍并综合了我们实验室最近的一些合作努力,以建立使用牙齿微磨损纹理分析的协议,最初开发用于重建化石哺乳动物的饮食,并帮助今天的牙科患者的临床评估。我们的想法是提出一种方法,将在许多牙科实践中使用的聚乙烯硅氧烷印模与表面纹理分析相结合,以快速,非侵入性和廉价的方法来检测和监测牙齿磨损的进展,在短时间内进行精细测量,并帮助确定牙齿组织损失的原因。我们对牙釉质和牙本质表面的磨损和侵蚀进行了体外实验和体内分析。利用扫描共聚焦剖面仪生成了印痕表面的三维点云,并采用标准ISO和尺度敏感分形分析方法对其进行了分析。作者的研究结果表明,纹理属性可以区分声音、磨损和侵蚀表面。此外,微磨损织构可以通过pH值和暴露时间来解析侵蚀性牙齿磨损。这些研究和其他相关研究表明,牙齿微磨损结构分析具有确定病理性牙齿磨损病因的潜力,并可用于临床评估和监测牙科患者在短时间内的细尺度牙齿组织过度损失的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信