Online Linearized Confidence-Weighted Learning on a Budget

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Jacky Chung-Hao Wu, Yu-Shiou Lin, Henry Horng-Shing Lu, Hsueh-Ming Hang
{"title":"Online Linearized Confidence-Weighted Learning on a Budget","authors":"Jacky Chung-Hao Wu,&nbsp;Yu-Shiou Lin,&nbsp;Henry Horng-Shing Lu,&nbsp;Hsueh-Ming Hang","doi":"10.1002/aisy.202400345","DOIUrl":null,"url":null,"abstract":"<p>Online learning aims to solve a sequence of consecutive prediction tasks by leveraging the knowledge gained from previous tasks. Linearized confidence-weighted (LCW) learning is the first online learning algorithm introducing the concept of weight confidence into the prediction model through distributions over weights. It provides the flexibility for weights to update their values at different scales. The kernel trick in machine learning can be applied to LCW for a better prediction performance. However, the kernel-based LCW algorithm is subject to the curse of kernelization which makes it vulnerable to the unlimited growth of the prediction model in runtime and memory consumption. In this study, we present the budgeted LCW (BLCW) algorithm which puts a limit on the growth by a predefined budget with optimization. Consequently, BLCW performs the LCW update and then reduces the information loss by projection. Based on the resource perspective that reinterprets LCW in terms of resources and utilization degrees, we demonstrated that BLCW approximates the kernel-based LCW algorithm. We evaluate four budget maintenance strategies and suggest that the mean removal is the most stable. By various numerical experiments on real datasets, we demonstrate that BLCW performs competitively and effectively when compared to leading budgeted online algorithms.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400345","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Online learning aims to solve a sequence of consecutive prediction tasks by leveraging the knowledge gained from previous tasks. Linearized confidence-weighted (LCW) learning is the first online learning algorithm introducing the concept of weight confidence into the prediction model through distributions over weights. It provides the flexibility for weights to update their values at different scales. The kernel trick in machine learning can be applied to LCW for a better prediction performance. However, the kernel-based LCW algorithm is subject to the curse of kernelization which makes it vulnerable to the unlimited growth of the prediction model in runtime and memory consumption. In this study, we present the budgeted LCW (BLCW) algorithm which puts a limit on the growth by a predefined budget with optimization. Consequently, BLCW performs the LCW update and then reduces the information loss by projection. Based on the resource perspective that reinterprets LCW in terms of resources and utilization degrees, we demonstrated that BLCW approximates the kernel-based LCW algorithm. We evaluate four budget maintenance strategies and suggest that the mean removal is the most stable. By various numerical experiments on real datasets, we demonstrate that BLCW performs competitively and effectively when compared to leading budgeted online algorithms.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信