Targeted Electrocatalysis for High-Performance Lithium–Sulfur Batteries

IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Aqsa Nazir, Anil Pathak, Dambar Hamal, Osama Awadallah, Saeme Motevalian, Ana Claus, Vadym Drozd, Bilal El-Zahab
{"title":"Targeted Electrocatalysis for High-Performance Lithium–Sulfur Batteries","authors":"Aqsa Nazir,&nbsp;Anil Pathak,&nbsp;Dambar Hamal,&nbsp;Osama Awadallah,&nbsp;Saeme Motevalian,&nbsp;Ana Claus,&nbsp;Vadym Drozd,&nbsp;Bilal El-Zahab","doi":"10.1002/eem2.12844","DOIUrl":null,"url":null,"abstract":"<p>The intricate sulfur redox chemistry involves multiple electron transfers and complicated phase changes. Catalysts have been previously explored to overcome the kinetic barrier in lithium–sulfur batteries (LSBs). This work contributes to closing the knowledge gap and examines electrocatalysis for enhancing LSB kinetics. With a strong chemical affinity for polysulfides, the electrocatalyst enables efficient adsorption and accelerated electron transfer reactions. Resulting cells with catalyzed cathodes exhibit improved rate capability and excellent stability over 500 cycles with 91.9% capacity retention at C/3. In addition, cells were shown to perform at high rates up to 2C and at high sulfur loadings up to 6 mg cm<sup>−2</sup>. Various electrochemical, spectroscopic, and microscopic analyses provide insights into the mechanism for retaining high activity, coulombic efficiency, and capacity. This work delves into crucial processes identifying pivotal reaction steps during the cycling process at commercially relevant areal capacities and rates.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 2","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12844","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12844","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The intricate sulfur redox chemistry involves multiple electron transfers and complicated phase changes. Catalysts have been previously explored to overcome the kinetic barrier in lithium–sulfur batteries (LSBs). This work contributes to closing the knowledge gap and examines electrocatalysis for enhancing LSB kinetics. With a strong chemical affinity for polysulfides, the electrocatalyst enables efficient adsorption and accelerated electron transfer reactions. Resulting cells with catalyzed cathodes exhibit improved rate capability and excellent stability over 500 cycles with 91.9% capacity retention at C/3. In addition, cells were shown to perform at high rates up to 2C and at high sulfur loadings up to 6 mg cm−2. Various electrochemical, spectroscopic, and microscopic analyses provide insights into the mechanism for retaining high activity, coulombic efficiency, and capacity. This work delves into crucial processes identifying pivotal reaction steps during the cycling process at commercially relevant areal capacities and rates.

Abstract Image

高性能锂硫电池的定向电催化
复杂的硫氧化还原化学涉及多次电子转移和复杂的相变。以前已经探索了催化剂来克服锂硫电池(LSBs)中的动力学障碍。这项工作有助于缩小知识差距,并检查电催化提高LSB动力学。由于对多硫化物具有很强的化学亲和力,电催化剂能够有效地吸附和加速电子转移反应。在C/3条件下,经过催化阴极的电池在500次循环中表现出更高的倍率性能和优异的稳定性,容量保持率为91.9%。此外,电池在高达2C的高速率和高达6 mg cm−2的高硫负荷下表现良好。各种电化学、光谱和微观分析提供了对保持高活性、库仑效率和容量的机制的见解。这项工作深入研究了在商业上相关的面积容量和速率循环过程中确定关键反应步骤的关键过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信