Compensated Current Mirror Neuron Circuits for Linear Charge Integration with Ultralow Static Power in Spiking Neural Networks

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Jonghyuk Park, Sungjoon Kim, Woo Young Choi
{"title":"Compensated Current Mirror Neuron Circuits for Linear Charge Integration with Ultralow Static Power in Spiking Neural Networks","authors":"Jonghyuk Park,&nbsp;Sungjoon Kim,&nbsp;Woo Young Choi","doi":"10.1002/aisy.202570010","DOIUrl":null,"url":null,"abstract":"<p><b>Spiking Neural Networks</b>\n </p><p>In article number 2400673, Jonghyuk Park, Sungjoon Kim, and Woo Young Choi present a neuron circuit that optimizes vector-matrix multiplication performance in spiking neural networks (SNNs) while ensuring low-power consumption. This research validates the achievement of high SNN system accuracy through a CMOS neuron circuit arranged to prevent non-linear operations that occur during the integration of massive synaptic arrays and neurons.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202570010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202570010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking Neural Networks

In article number 2400673, Jonghyuk Park, Sungjoon Kim, and Woo Young Choi present a neuron circuit that optimizes vector-matrix multiplication performance in spiking neural networks (SNNs) while ensuring low-power consumption. This research validates the achievement of high SNN system accuracy through a CMOS neuron circuit arranged to prevent non-linear operations that occur during the integration of massive synaptic arrays and neurons.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信