{"title":"Compensated Current Mirror Neuron Circuits for Linear Charge Integration with Ultralow Static Power in Spiking Neural Networks","authors":"Jonghyuk Park, Sungjoon Kim, Woo Young Choi","doi":"10.1002/aisy.202570010","DOIUrl":null,"url":null,"abstract":"<p><b>Spiking Neural Networks</b>\n </p><p>In article number 2400673, Jonghyuk Park, Sungjoon Kim, and Woo Young Choi present a neuron circuit that optimizes vector-matrix multiplication performance in spiking neural networks (SNNs) while ensuring low-power consumption. This research validates the achievement of high SNN system accuracy through a CMOS neuron circuit arranged to prevent non-linear operations that occur during the integration of massive synaptic arrays and neurons.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202570010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202570010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Spiking Neural Networks
In article number 2400673, Jonghyuk Park, Sungjoon Kim, and Woo Young Choi present a neuron circuit that optimizes vector-matrix multiplication performance in spiking neural networks (SNNs) while ensuring low-power consumption. This research validates the achievement of high SNN system accuracy through a CMOS neuron circuit arranged to prevent non-linear operations that occur during the integration of massive synaptic arrays and neurons.