Calibrating Strain Measurements: A Comparative Study of DAS, Strainmeter, and Seismic Data

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Chih-Chieh Chien, Peter Gerstoft, William Hatfield, Leo Hollberg, Bradley P. Lipovsky, John-Morgan Manos, Robert J. Mellors, Dale P. Winebrenner, Mark A. Zumberge
{"title":"Calibrating Strain Measurements: A Comparative Study of DAS, Strainmeter, and Seismic Data","authors":"Chih-Chieh Chien,&nbsp;Peter Gerstoft,&nbsp;William Hatfield,&nbsp;Leo Hollberg,&nbsp;Bradley P. Lipovsky,&nbsp;John-Morgan Manos,&nbsp;Robert J. Mellors,&nbsp;Dale P. Winebrenner,&nbsp;Mark A. Zumberge","doi":"10.1029/2024EA003940","DOIUrl":null,"url":null,"abstract":"<p>Significant interest has developed in using optical fibers for seismology through Distributed Acoustic Sensing (DAS). However, converting DAS strain measurements to actual ground motions can result in errors and uncertainties due to imperfect coupling of the fiber to the earth and instrument response functions. To address this, we conducted a comparative analysis of strain data recorded by DAS, Optical Fiber Strainmeters (OFSs), and estimates derived from seismic data. This study used dark fibers in a commercial cable connecting two islands in Puget Sound, Washington, USA. The cable extends from a telecommunication substation on Whidbey Island, through an underground conduit, and across Saratoga Passage to Camano Island. The strain along the cable was recorded using OFS Michelson interferometers and a DAS interrogator, with a broadband seismometer positioned at one end. Comparing a teleseismic earthquake recording showed that summed DAS channels agreed well with OFS recordings. The amplitude discrepancies between the measurements and the seismometer's estimated strain indicated poor coupling between the cable and the earth. We also evaluated DAS amplitude response using a piezoelectric cylinder (PZT) to generate ground truth strain. The findings revealed a notable amplitude decrease in DAS recordings at lower frequencies, highlighting the need for amplitude calibration. Moreover, some underwater signals in the study area were strongly correlated with the velocity of the tidal current. These signals can be localized through coherence calculations between the DAS and OFS recordings.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003940","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003940","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Significant interest has developed in using optical fibers for seismology through Distributed Acoustic Sensing (DAS). However, converting DAS strain measurements to actual ground motions can result in errors and uncertainties due to imperfect coupling of the fiber to the earth and instrument response functions. To address this, we conducted a comparative analysis of strain data recorded by DAS, Optical Fiber Strainmeters (OFSs), and estimates derived from seismic data. This study used dark fibers in a commercial cable connecting two islands in Puget Sound, Washington, USA. The cable extends from a telecommunication substation on Whidbey Island, through an underground conduit, and across Saratoga Passage to Camano Island. The strain along the cable was recorded using OFS Michelson interferometers and a DAS interrogator, with a broadband seismometer positioned at one end. Comparing a teleseismic earthquake recording showed that summed DAS channels agreed well with OFS recordings. The amplitude discrepancies between the measurements and the seismometer's estimated strain indicated poor coupling between the cable and the earth. We also evaluated DAS amplitude response using a piezoelectric cylinder (PZT) to generate ground truth strain. The findings revealed a notable amplitude decrease in DAS recordings at lower frequencies, highlighting the need for amplitude calibration. Moreover, some underwater signals in the study area were strongly correlated with the velocity of the tidal current. These signals can be localized through coherence calculations between the DAS and OFS recordings.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信