Pietro Demattê Avona, Alvaro Penteado Crósta, Marcos Alberto Rodrigues Vasconcelos, Evan Bjonnes, Fernando Lessa Pereira, Ana Maria Góes
{"title":"Geology, gravity, and numerical modeling of the Nova Colinas impact structure, Parnaíba Basin, Brazil","authors":"Pietro Demattê Avona, Alvaro Penteado Crósta, Marcos Alberto Rodrigues Vasconcelos, Evan Bjonnes, Fernando Lessa Pereira, Ana Maria Góes","doi":"10.1111/maps.14306","DOIUrl":null,"url":null,"abstract":"<p>Nova Colinas, centered at 07°09′33″ S/46°06′30″ W, is the ninth confirmed complex impact structure in Brazil and the fifth in the Parnaíba Basin, with a diameter of ~6.5–7 km and a nearly circular shape. Impactites include shocked siltstones from the Pedra de Fogo Fm. found at the central peak, brecciated sandstone from the Sambaíba Fm. bearing microscopic shock features, and brecciated basalt from the Mosquito Fm. bearing shatter cones. The impact event's age has been constrained to the interval from ~130 to ~199 Ma based on the local stratigraphy. Due to its moderate to advanced stage of erosion, geophysical modeling combined with geological field data were employed for its characterization. A new geological map was produced through field observations and remote sensing image interpretation, as well as a 3-D model based on ground gravity data and numerical modeling. iSALE2D shock physics code was employed to simulate the formation of Nova Colinas crater. The results revealed its main structural zones: the central uplift, annular basin, and outer rim, each associated with specific lithostratigraphic units from the Parnaíba Basin. Bouguer residual anomalies ranged from −3.6 to 1.2 mGal, with a nearly circular positive anomaly at the center of the structure, surrounded by a negative anomaly. 3-D gravity data inversion indicated a buried high-density body, likely due to the uplift of a diabase sill. Results of the numerical modeling point out that the final crater reached gravitational stability with a diameter of ~7 km and a depth of ~240 m, suggesting that a narrow outcrop strip of the Motuca Fm. was uplifted to a higher level compared to the Sambaíba Fm. strata, forming an antiform-like “arch” that creates an inner ring that exposes rocks of the Motuca Formation.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 2","pages":"286-307"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14306","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Nova Colinas, centered at 07°09′33″ S/46°06′30″ W, is the ninth confirmed complex impact structure in Brazil and the fifth in the Parnaíba Basin, with a diameter of ~6.5–7 km and a nearly circular shape. Impactites include shocked siltstones from the Pedra de Fogo Fm. found at the central peak, brecciated sandstone from the Sambaíba Fm. bearing microscopic shock features, and brecciated basalt from the Mosquito Fm. bearing shatter cones. The impact event's age has been constrained to the interval from ~130 to ~199 Ma based on the local stratigraphy. Due to its moderate to advanced stage of erosion, geophysical modeling combined with geological field data were employed for its characterization. A new geological map was produced through field observations and remote sensing image interpretation, as well as a 3-D model based on ground gravity data and numerical modeling. iSALE2D shock physics code was employed to simulate the formation of Nova Colinas crater. The results revealed its main structural zones: the central uplift, annular basin, and outer rim, each associated with specific lithostratigraphic units from the Parnaíba Basin. Bouguer residual anomalies ranged from −3.6 to 1.2 mGal, with a nearly circular positive anomaly at the center of the structure, surrounded by a negative anomaly. 3-D gravity data inversion indicated a buried high-density body, likely due to the uplift of a diabase sill. Results of the numerical modeling point out that the final crater reached gravitational stability with a diameter of ~7 km and a depth of ~240 m, suggesting that a narrow outcrop strip of the Motuca Fm. was uplifted to a higher level compared to the Sambaíba Fm. strata, forming an antiform-like “arch” that creates an inner ring that exposes rocks of the Motuca Formation.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.