Oihane Echeverria-Altuna, Pablo Benguria, Ainara Saralegi, Isabel Harismendy, Arantxa Eceiza
{"title":"Feasibility Assessment of BIO-PUR Composites for Offshore Applications","authors":"Oihane Echeverria-Altuna, Pablo Benguria, Ainara Saralegi, Isabel Harismendy, Arantxa Eceiza","doi":"10.1007/s10924-024-03485-1","DOIUrl":null,"url":null,"abstract":"<div><p>The quest for sustainable materials in offshore renewable energy is critical for mitigating the environmental concerns associated with the use of conventional composites. This study explores the potential of vegetable oil-based polyurethanes (BIO-PUR) as a sustainable alternative to petrochemical-based resins in offshore structural applications. BIO-PUR composites were fabricated, mechanically characterized, and subjected to real-world marine environments in the HarshLab floating laboratory, with exposure durations of 3 and 5 months in both atmospheric and immersion zones. Comprehensive testing, including dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and interlaminar shear strength (ILSS) assessments, showed no significant degradation in the mechanical, thermal, or chemical properties of the composites. Notably, water absorption remained minimal, and the glass transition temperature of the material (T<sub>g</sub>) and interlaminar strength remained unchanged after exposure, highlighting the exceptional durability of BIO-PUR in harsh marine environments. These results suggest that BIO-PUR composites could not only meet but potentially surpass the performance requirements for long-term offshore applications, offering a highly promising eco-friendly alternative to traditional composites. This study provides a foundation for future research into the long-term viability of biobased materials in offshore energy systems, paving the way for more sustainable solutions in renewable energy infrastructures.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 3","pages":"1491 - 1504"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10924-024-03485-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03485-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The quest for sustainable materials in offshore renewable energy is critical for mitigating the environmental concerns associated with the use of conventional composites. This study explores the potential of vegetable oil-based polyurethanes (BIO-PUR) as a sustainable alternative to petrochemical-based resins in offshore structural applications. BIO-PUR composites were fabricated, mechanically characterized, and subjected to real-world marine environments in the HarshLab floating laboratory, with exposure durations of 3 and 5 months in both atmospheric and immersion zones. Comprehensive testing, including dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and interlaminar shear strength (ILSS) assessments, showed no significant degradation in the mechanical, thermal, or chemical properties of the composites. Notably, water absorption remained minimal, and the glass transition temperature of the material (Tg) and interlaminar strength remained unchanged after exposure, highlighting the exceptional durability of BIO-PUR in harsh marine environments. These results suggest that BIO-PUR composites could not only meet but potentially surpass the performance requirements for long-term offshore applications, offering a highly promising eco-friendly alternative to traditional composites. This study provides a foundation for future research into the long-term viability of biobased materials in offshore energy systems, paving the way for more sustainable solutions in renewable energy infrastructures.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.