Hilbert polynomial of length functions

IF 0.9 3区 数学 Q1 MATHEMATICS
Antongiulio Fornasiero
{"title":"Hilbert polynomial of length functions","authors":"Antongiulio Fornasiero","doi":"10.1007/s10231-024-01474-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\lambda \\)</span> be a general length function for modules over a Noetherian ring R. We use <span>\\(\\lambda \\)</span> to introduce Hilbert series and polynomials for R[X]-modules, measuring the growth rate of <span>\\(\\lambda \\)</span>. We show that the leading term <span>\\(\\mu \\)</span> of the Hilbert polynomial is an invariant of the module, which refines both the algebraic entropy and the receptive algebraic entropy; its degree is a suitable notion of dimension for <i>R</i>[<i>X</i>]-modules. Similar to algebraic entropy, <span>\\(\\mu \\)</span> in general is not additive for exact sequences of <i>R</i>[<i>X</i>]-modules: we demonstrate how to adapt certain entropy constructions to this new invariant. We also consider multi-variate versions of the Hilbert polynomial.\n</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 1","pages":"73 - 116"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01474-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01474-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\lambda \) be a general length function for modules over a Noetherian ring R. We use \(\lambda \) to introduce Hilbert series and polynomials for R[X]-modules, measuring the growth rate of \(\lambda \). We show that the leading term \(\mu \) of the Hilbert polynomial is an invariant of the module, which refines both the algebraic entropy and the receptive algebraic entropy; its degree is a suitable notion of dimension for R[X]-modules. Similar to algebraic entropy, \(\mu \) in general is not additive for exact sequences of R[X]-modules: we demonstrate how to adapt certain entropy constructions to this new invariant. We also consider multi-variate versions of the Hilbert polynomial.

长度函数的希尔伯特多项式
设\(\lambda \)为Noetherian环R上模块的一般长度函数。我们使用\(\lambda \)引入R[X]-模块的Hilbert级数和多项式,测量\(\lambda \)的增长率。我们证明了Hilbert多项式的首项\(\mu \)是模的不变量,它精炼了代数熵和接受代数熵;它的度是一个适合于R[X]-模的维数概念。与代数熵类似,\(\mu \)对于R[X]-模块的精确序列通常不是可加的:我们演示了如何将某些熵结构适应于这个新的不变量。我们也考虑希尔伯特多项式的多变量版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信