The development of a 500 g macro-thermogravimetric analyzer and its typical application in the thermal decomposition of limestone

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Lixin Sun, Qitu Zhang
{"title":"The development of a 500 g macro-thermogravimetric analyzer and its typical application in the thermal decomposition of limestone","authors":"Lixin Sun,&nbsp;Qitu Zhang","doi":"10.1007/s10973-024-13834-w","DOIUrl":null,"url":null,"abstract":"<div><p>This work developed a macro-thermogravimetric analyzer (macro-TGA) of maximal 500 g sample capacity as the mini-pilot system to evaluate the thermochemistry process for industrial bulk samples, which is the first report about the lever-equal beam balance-based wide-range/variations (500 g) macro-TGA with high precision, excellent reliability and low cost. The macro-TGA adopts many novel designs to become one of the most advanced macro-TGA, including eight groups of reinforced parallel coils and magnetic cores as the electronic mass with enough force moment weighing 500 g mass, elaborately arranged blast fences and gas distribution tube with minimum disturbance from gas flow, as well as a all-sided ventilated ceramic crucible coupling a mobile thermocouple with minimal influence of mass/heat transfer from apparatus itself. As a typical application case, the thermal decomposition behaviors and apparent kinetics of industrial bulk limestone were evaluated by this macro-TGA. Compared with results from micro-TGA, the industrial bulk limestone in macro-TGA exhibits completely different thermal decomposition behaviors with obviously elevated initial thermal decomposition temperature, significantly prolonged thermal decomposition time as well as different apparent activation energies, which can be attributed to significant differences between bulk and fine limestone particles in terms of heat transfer resistance and inherent structure. The demonstrated wide-range/variations lever-equal beam balance-based macro-TGA with good reliability will become a powerful mini-pilot instrument to evaluate the thermal decomposition behaviors and apparent kinetics of industrial bulk samples with large mass/size.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"150 1","pages":"259 - 271"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13834-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work developed a macro-thermogravimetric analyzer (macro-TGA) of maximal 500 g sample capacity as the mini-pilot system to evaluate the thermochemistry process for industrial bulk samples, which is the first report about the lever-equal beam balance-based wide-range/variations (500 g) macro-TGA with high precision, excellent reliability and low cost. The macro-TGA adopts many novel designs to become one of the most advanced macro-TGA, including eight groups of reinforced parallel coils and magnetic cores as the electronic mass with enough force moment weighing 500 g mass, elaborately arranged blast fences and gas distribution tube with minimum disturbance from gas flow, as well as a all-sided ventilated ceramic crucible coupling a mobile thermocouple with minimal influence of mass/heat transfer from apparatus itself. As a typical application case, the thermal decomposition behaviors and apparent kinetics of industrial bulk limestone were evaluated by this macro-TGA. Compared with results from micro-TGA, the industrial bulk limestone in macro-TGA exhibits completely different thermal decomposition behaviors with obviously elevated initial thermal decomposition temperature, significantly prolonged thermal decomposition time as well as different apparent activation energies, which can be attributed to significant differences between bulk and fine limestone particles in terms of heat transfer resistance and inherent structure. The demonstrated wide-range/variations lever-equal beam balance-based macro-TGA with good reliability will become a powerful mini-pilot instrument to evaluate the thermal decomposition behaviors and apparent kinetics of industrial bulk samples with large mass/size.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信