Solidification effect of MXene nano-enhanced phase change material on 2E’s analysis of latent heat thermal energy storage

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Utkarsh Srivastava, Rashmi Rekha Sahoo
{"title":"Solidification effect of MXene nano-enhanced phase change material on 2E’s analysis of latent heat thermal energy storage","authors":"Utkarsh Srivastava,&nbsp;Rashmi Rekha Sahoo","doi":"10.1007/s10973-024-13936-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, systems efficiency, heat transfer rate, exergy destruction, entropy generation number, exergetic efficiency, liquid fraction, and solidification temperature contours are determined for double-tube thermal energy storage (DT-TES) and triple-tube thermal energy storage (TT-TES) systems using MXene-based nano-enhanced phase changes material (NEPCM). The findings showed that the DT-TES using pure beeswax PCM in pure solidification has a discharge exergy 14.76% lower than that of MXene-based NEPCM. Using the TT-TES system, pure PCM and MXene NEPCM produced 2.47% and 3.62% less entropy at 2400 s than pure beeswax. Over 2400 s, DT-TES using pure beeswax discharged more effectively. Because of the superior thermophysical characteristics of MXene nanoparticles, the TT-TES system solidified beeswax PCM 18.53% faster than pure PCM. Consequently, under TT-TES latent heat, MXene-based nano-enhanced beeswax PCM solidifies more quickly per volume.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"150 1","pages":"107 - 121"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13936-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, systems efficiency, heat transfer rate, exergy destruction, entropy generation number, exergetic efficiency, liquid fraction, and solidification temperature contours are determined for double-tube thermal energy storage (DT-TES) and triple-tube thermal energy storage (TT-TES) systems using MXene-based nano-enhanced phase changes material (NEPCM). The findings showed that the DT-TES using pure beeswax PCM in pure solidification has a discharge exergy 14.76% lower than that of MXene-based NEPCM. Using the TT-TES system, pure PCM and MXene NEPCM produced 2.47% and 3.62% less entropy at 2400 s than pure beeswax. Over 2400 s, DT-TES using pure beeswax discharged more effectively. Because of the superior thermophysical characteristics of MXene nanoparticles, the TT-TES system solidified beeswax PCM 18.53% faster than pure PCM. Consequently, under TT-TES latent heat, MXene-based nano-enhanced beeswax PCM solidifies more quickly per volume.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信