Hierarchical nanostructuring of PCN-222/NiSe2@PANI composites for enhanced electrochemical performance in supercapattery and hydrogen evolution reaction applications

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Muhammad Zeeshan, Soumaya Gouadria, Fatma Alharbi, M. Waqas Iqbal, Muhammad Arslan Sunny, Haseebul Hassan, N. A. Ismayilova, Hussein Alrobei, Yazen. M. Alawaideh, Ehtisham Umar
{"title":"Hierarchical nanostructuring of PCN-222/NiSe2@PANI composites for enhanced electrochemical performance in supercapattery and hydrogen evolution reaction applications","authors":"Muhammad Zeeshan,&nbsp;Soumaya Gouadria,&nbsp;Fatma Alharbi,&nbsp;M. Waqas Iqbal,&nbsp;Muhammad Arslan Sunny,&nbsp;Haseebul Hassan,&nbsp;N. A. Ismayilova,&nbsp;Hussein Alrobei,&nbsp;Yazen. M. Alawaideh,&nbsp;Ehtisham Umar","doi":"10.1007/s00339-025-08308-1","DOIUrl":null,"url":null,"abstract":"<div><p>The supercapattery integrates the rapid power output of supercapacitors (SCs) with the substantial energy storage capacity typical of batteries. Metal-organic frameworks (MOFs) offer a stable porous structure that enhances efficient ion transport through strong metal-organic linkages. Metal diselenides contribute high conductivity and stability, strengthening the composite’s energy and power densities. Polyaniline (PANI) provides pseudocapacitive behavior, further improving charge storage. This study presents a PCN-222/NiSe<sub>2</sub>@PANI composite synthesized hydrothermal, ensuring strong material integration and uniform distribution. Surface morphology and phase purity, analyzed by SEM and XRD, confirmed structural uniformity and stability. Electrochemical testing revealed a specific capacity (Qs) of 2449 ± 5 C/g at 2.0 A/g in a tri-electrode configuration. A two-electrode supercapattery, fabricated using PCN-222/NiSe<sub>2</sub>@PANI as the anode and activated carbon (AC) as the cathode, achieved an energy density of 68 Wh/kg and a power density of 900 W/kg, with 87.6% capacity retention over 8,000 GCD cycles, surpassing standard benchmarks. The power-law analysis yielded <i>b</i>-fitting values between 0.58 and 0.75, indicating hybrid charge storage. The composite exhibited promising hydrogen evolution reaction (HER) activity, with an overpotential of 87 ± 5 mV and a Tafel slope of 78 ± 5 mV/dec, showing high catalytic efficiency and favorable charge transfer kinetics. These results position PCN-222/NiSe<sub>2</sub>@PANI as a strong contender for high-performance supercapattery applications, advancing energy storage and conversion technologies.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08308-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The supercapattery integrates the rapid power output of supercapacitors (SCs) with the substantial energy storage capacity typical of batteries. Metal-organic frameworks (MOFs) offer a stable porous structure that enhances efficient ion transport through strong metal-organic linkages. Metal diselenides contribute high conductivity and stability, strengthening the composite’s energy and power densities. Polyaniline (PANI) provides pseudocapacitive behavior, further improving charge storage. This study presents a PCN-222/NiSe2@PANI composite synthesized hydrothermal, ensuring strong material integration and uniform distribution. Surface morphology and phase purity, analyzed by SEM and XRD, confirmed structural uniformity and stability. Electrochemical testing revealed a specific capacity (Qs) of 2449 ± 5 C/g at 2.0 A/g in a tri-electrode configuration. A two-electrode supercapattery, fabricated using PCN-222/NiSe2@PANI as the anode and activated carbon (AC) as the cathode, achieved an energy density of 68 Wh/kg and a power density of 900 W/kg, with 87.6% capacity retention over 8,000 GCD cycles, surpassing standard benchmarks. The power-law analysis yielded b-fitting values between 0.58 and 0.75, indicating hybrid charge storage. The composite exhibited promising hydrogen evolution reaction (HER) activity, with an overpotential of 87 ± 5 mV and a Tafel slope of 78 ± 5 mV/dec, showing high catalytic efficiency and favorable charge transfer kinetics. These results position PCN-222/NiSe2@PANI as a strong contender for high-performance supercapattery applications, advancing energy storage and conversion technologies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信