Stabilization of expansive soil through MICP and jute fiber reinforcement: strength and shrink-swell analysis

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Shantanu Paul, Tisha Sikder, Mumtahmina Mim
{"title":"Stabilization of expansive soil through MICP and jute fiber reinforcement: strength and shrink-swell analysis","authors":"Shantanu Paul,&nbsp;Tisha Sikder,&nbsp;Mumtahmina Mim","doi":"10.1007/s10064-025-04159-5","DOIUrl":null,"url":null,"abstract":"<div><p>Expanding on the challenges of expansive soils to civil infrastructure, this research delves into the synergistic application of microbially induced calcium carbonate precipitation (MICP) through bio-stimulation and natural fiber reinforcement to mitigate soil swell-shrink behavior and enhance soil strength. This research diverges from traditional methods by addressing their economic and environmental limitations. The dual strategy of bio-stimulation with natural fiber reinforcement was assessed through laboratory tests, including unconfined compression, 1D swell, linear shrinkage tests, and microstructural analysis. This methodology involved preparing solutions to foster bacterial growth and strategically adding jute fibers to enhance the soil matrix. Results revealed significant improvements in soil strength (up to 186%), and reductions in swell strain (up to 85%) and swell pressure (up to 90%), with the optimal jute fiber content at 1.5%. Additionally, a significant increase in calcium carbonate content (163–176%) highlighted bio-stimulation's role in soil stabilization. SEM analysis showed that bio-stimulation and jute fiber reinforcement transformed the soil microstructure, enhancing cohesion and reducing deformability. These outcomes highlight the promise of combining bio-stimulated MICP with natural fiber reinforcement as an eco-friendly and efficient approach to soil stabilization. They also add to the growing body of knowledge on tackling the issues posed by expansive soils in civil engineering applications.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04159-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Expanding on the challenges of expansive soils to civil infrastructure, this research delves into the synergistic application of microbially induced calcium carbonate precipitation (MICP) through bio-stimulation and natural fiber reinforcement to mitigate soil swell-shrink behavior and enhance soil strength. This research diverges from traditional methods by addressing their economic and environmental limitations. The dual strategy of bio-stimulation with natural fiber reinforcement was assessed through laboratory tests, including unconfined compression, 1D swell, linear shrinkage tests, and microstructural analysis. This methodology involved preparing solutions to foster bacterial growth and strategically adding jute fibers to enhance the soil matrix. Results revealed significant improvements in soil strength (up to 186%), and reductions in swell strain (up to 85%) and swell pressure (up to 90%), with the optimal jute fiber content at 1.5%. Additionally, a significant increase in calcium carbonate content (163–176%) highlighted bio-stimulation's role in soil stabilization. SEM analysis showed that bio-stimulation and jute fiber reinforcement transformed the soil microstructure, enhancing cohesion and reducing deformability. These outcomes highlight the promise of combining bio-stimulated MICP with natural fiber reinforcement as an eco-friendly and efficient approach to soil stabilization. They also add to the growing body of knowledge on tackling the issues posed by expansive soils in civil engineering applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信