The Physicochemical Changes of Cellulose Hydrolyzed with HCl Vapor after Pretreatment with FeCl3

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL
Herman Marius Zendrato, Nanang Masruchin, Siti Nikmatin, Nam Hun Kim, Seung Hwan Lee, Nyoman Jaya Wistara
{"title":"The Physicochemical Changes of Cellulose Hydrolyzed with HCl Vapor after Pretreatment with FeCl3","authors":"Herman Marius Zendrato,&nbsp;Nanang Masruchin,&nbsp;Siti Nikmatin,&nbsp;Nam Hun Kim,&nbsp;Seung Hwan Lee,&nbsp;Nyoman Jaya Wistara","doi":"10.1007/s10924-025-03494-8","DOIUrl":null,"url":null,"abstract":"<div><p>Improving the accessibility of cellulose is essential for the production of derivative products. This can be achieved by modifying its physicochemical properties. This research aimed to investigate the properties of cellulose extracted from the torch ginger stem. The cellulose was pretreated with FeCl<sub>3</sub> and then hydrolyzed using HCl vapor at a 37% concentration. Hydrolysis was conducted in a pressurized HCl vapor system at 27.60 kPa and 30 °C for 0–24 h. Similar treatment was conducted to cellulose without FeCl<sub>3</sub> (unpretreated). The results show that FeCl<sub>3</sub> pretreatment significantly decreased degree of polymerization (DP) from 0 to 24 h compared to unpretreated cellulose. The hydrolysis reaction occurred above the saturation point of HCl. When the cellulose was hydrolyzed with HCl vapor, cellulose morphology, thermal properties, and functional groups remained largely unchanged, respectively, as observed by FESEM, TGA, and FTIR methods. However, the X-ray diffractograms and FTIR spectra revealed that decrystallization of FeCl<sub>3</sub> pretreated cellulose occurred after 10 h of hydrolysis. The 24 h hydrolysis yield for FeCl<sub>3</sub> unpretreated and pretreated cellulose was 90.6% (DP of 118) and 86.8% (DP of 76), respectively. Therefore, this hydrolysis system can be considered an important pretreatment method for preparing cellulose derivatives.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 3","pages":"1403 - 1422"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03494-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the accessibility of cellulose is essential for the production of derivative products. This can be achieved by modifying its physicochemical properties. This research aimed to investigate the properties of cellulose extracted from the torch ginger stem. The cellulose was pretreated with FeCl3 and then hydrolyzed using HCl vapor at a 37% concentration. Hydrolysis was conducted in a pressurized HCl vapor system at 27.60 kPa and 30 °C for 0–24 h. Similar treatment was conducted to cellulose without FeCl3 (unpretreated). The results show that FeCl3 pretreatment significantly decreased degree of polymerization (DP) from 0 to 24 h compared to unpretreated cellulose. The hydrolysis reaction occurred above the saturation point of HCl. When the cellulose was hydrolyzed with HCl vapor, cellulose morphology, thermal properties, and functional groups remained largely unchanged, respectively, as observed by FESEM, TGA, and FTIR methods. However, the X-ray diffractograms and FTIR spectra revealed that decrystallization of FeCl3 pretreated cellulose occurred after 10 h of hydrolysis. The 24 h hydrolysis yield for FeCl3 unpretreated and pretreated cellulose was 90.6% (DP of 118) and 86.8% (DP of 76), respectively. Therefore, this hydrolysis system can be considered an important pretreatment method for preparing cellulose derivatives.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信