Highly-Porous Plasticized Polylactide Foams with Bi-modal Structure Prepared via a Combined Economical Process: Processing-Morphology-Performance Correlations

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL
Pedram Bahrami, Danial Abbasi, Ali Matin, Reyhane Shahpouri, Farkhondeh Hemmati, Jamshid Mohammadi-Roshandeh
{"title":"Highly-Porous Plasticized Polylactide Foams with Bi-modal Structure Prepared via a Combined Economical Process: Processing-Morphology-Performance Correlations","authors":"Pedram Bahrami,&nbsp;Danial Abbasi,&nbsp;Ali Matin,&nbsp;Reyhane Shahpouri,&nbsp;Farkhondeh Hemmati,&nbsp;Jamshid Mohammadi-Roshandeh","doi":"10.1007/s10924-025-03491-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, highly porous biodegradable poly(lactic acid) (PLA) foams with bi-modal architecture were prepared by using the melt-compounding process in a twin-screw extruder and filler leaching technique. The highly-filled composites of PLA/salt porogen were extruded and then, subjected to distilled water to obtain lightweight inter-connected nano- and micro-cellular structure for foams with 100% open cell content. The density of PLA diminished from 1.14 g/cm<sup>3</sup> to 0.3 g/cm<sup>3</sup> by using these simple and economical preparation methods. In the presence of poly(ethylene glycol) (PEG) plasticizer, the void content of open-cell PLA foam reached 72%. The bi-modal cell size distribution of foams was created by the partial miscibility of PLA/PEG phase and salt. The cell density of prepared foams rose to 6 × 10<sup>7</sup> cells/cm<sup>3</sup> by adding 15 wt% PEG to the PLA melt. The presence of PEG in the PLA melt affected the microstructure and mechanical properties of foams by altering the melt viscosity and surface tension. These open-cell bi-modal porous foams, which are biocompatible and biodegradable, can be applied in biomedical and pollutant adsorption applications. The adsorption capacities of the open-cell foams were measured for different solvents and marine pollutants. The adsorption capacity of these foams reached 4 g/g for carbon tetrachloride.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 3","pages":"1423 - 1444"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03491-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, highly porous biodegradable poly(lactic acid) (PLA) foams with bi-modal architecture were prepared by using the melt-compounding process in a twin-screw extruder and filler leaching technique. The highly-filled composites of PLA/salt porogen were extruded and then, subjected to distilled water to obtain lightweight inter-connected nano- and micro-cellular structure for foams with 100% open cell content. The density of PLA diminished from 1.14 g/cm3 to 0.3 g/cm3 by using these simple and economical preparation methods. In the presence of poly(ethylene glycol) (PEG) plasticizer, the void content of open-cell PLA foam reached 72%. The bi-modal cell size distribution of foams was created by the partial miscibility of PLA/PEG phase and salt. The cell density of prepared foams rose to 6 × 107 cells/cm3 by adding 15 wt% PEG to the PLA melt. The presence of PEG in the PLA melt affected the microstructure and mechanical properties of foams by altering the melt viscosity and surface tension. These open-cell bi-modal porous foams, which are biocompatible and biodegradable, can be applied in biomedical and pollutant adsorption applications. The adsorption capacities of the open-cell foams were measured for different solvents and marine pollutants. The adsorption capacity of these foams reached 4 g/g for carbon tetrachloride.

Abstract Image

复合经济工艺制备双模态高孔聚乳酸增塑泡沫:工艺-形态-性能相关性
采用双螺杆挤出和填料浸出技术,制备了具有双模态结构的高孔可生物降解聚乳酸(PLA)泡沫。将高填充的聚乳酸/盐孔隙素复合材料进行挤压,然后经过蒸馏水处理,获得了具有100%开孔含量的轻质互联泡沫材料的纳微孔结构。通过这些简单经济的制备方法,PLA的密度从1.14 g/cm3降低到0.3 g/cm3。在聚乙二醇(PEG)增塑剂的存在下,开孔PLA泡沫的孔隙率达到72%。聚乳酸/聚乙二醇相与盐的部分混溶形成了泡沫的双峰型细胞尺寸分布。在PLA熔体中加入15 wt%的PEG,制备的泡沫细胞密度提高到6 × 107细胞/cm3。聚乙二醇在PLA熔体中的存在通过改变熔体粘度和表面张力影响泡沫的微观结构和力学性能。这些具有生物相容性和可生物降解的开孔双峰多孔泡沫材料可用于生物医学和污染物吸附。考察了开孔泡沫对不同溶剂和海洋污染物的吸附能力。对四氯化碳的吸附量达到4 g/g。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信