Enhancing Corn Starch Hydrogels for Effective Sorption of Potentially Toxic Metals: The Role of Amylose and Amylopectin Content

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL
Talles B. da Costa, Paulo H. Camani, Rafaela R. Ferreira, Rennan F. S. Barbosa, Derval dos S. Rosa
{"title":"Enhancing Corn Starch Hydrogels for Effective Sorption of Potentially Toxic Metals: The Role of Amylose and Amylopectin Content","authors":"Talles B. da Costa,&nbsp;Paulo H. Camani,&nbsp;Rafaela R. Ferreira,&nbsp;Rennan F. S. Barbosa,&nbsp;Derval dos S. Rosa","doi":"10.1007/s10924-025-03495-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluated the effect of corn starch's amylose/amylopectin content on the development of crosslinked hydrogels with trisodium citrate for the sorption of potentially toxic metals (PTMs). The results, obtained through a robust methodology, indicated a clear relation between the amylose content and crosslinking degree, thereby impacting the properties of the hydrogels. The hydrogel with high amylose (70 wt.%) and low amylopectin (30 wt.%) content (Hylon VII®) demonstrated a high crosslinking degree (0.297) and good thermal stability and water absorption (72.71%), with a semicrystalline structure. The hydrogel with low amylose (1.8 wt.%) and high amylopectin (98.2 wt.%) content (Amisol 4000®), on the other hand, showed the lowest degree of crosslinking (0.109), water absorption (49.77%), and high solubility (46%), which makes its applicability difficult due to its low stability in aqueous media. The influence of amylose (28 wt.%) and amylopectin (72 wt.%) content indicated that the Amisol 3408® hydrogel showed valuable properties, presenting a higher potential for PTMs sorption with the following affinity order: Cu<sup>2+</sup> (68.62%) &gt; Cd<sup>2+</sup> (63.13%) &gt; Mn<sup>2+</sup> (37.36%) &gt; Zn<sup>2+</sup> (26.61%) &gt; Cr<sup>6+</sup> (16.80%). Besides, the possible sorption mechanism was ion exchange between Cu<sup>2+</sup>/Cd<sup>2+</sup>/Mn<sup>2+</sup>/Zn<sup>2+</sup> and H<sup>+</sup> in the hydrogels. Thus, starch-based hydrogel is an alternative sorbent to remove and recover PTMs from wastewater.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 3","pages":"1615 - 1635"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03495-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluated the effect of corn starch's amylose/amylopectin content on the development of crosslinked hydrogels with trisodium citrate for the sorption of potentially toxic metals (PTMs). The results, obtained through a robust methodology, indicated a clear relation between the amylose content and crosslinking degree, thereby impacting the properties of the hydrogels. The hydrogel with high amylose (70 wt.%) and low amylopectin (30 wt.%) content (Hylon VII®) demonstrated a high crosslinking degree (0.297) and good thermal stability and water absorption (72.71%), with a semicrystalline structure. The hydrogel with low amylose (1.8 wt.%) and high amylopectin (98.2 wt.%) content (Amisol 4000®), on the other hand, showed the lowest degree of crosslinking (0.109), water absorption (49.77%), and high solubility (46%), which makes its applicability difficult due to its low stability in aqueous media. The influence of amylose (28 wt.%) and amylopectin (72 wt.%) content indicated that the Amisol 3408® hydrogel showed valuable properties, presenting a higher potential for PTMs sorption with the following affinity order: Cu2+ (68.62%) > Cd2+ (63.13%) > Mn2+ (37.36%) > Zn2+ (26.61%) > Cr6+ (16.80%). Besides, the possible sorption mechanism was ion exchange between Cu2+/Cd2+/Mn2+/Zn2+ and H+ in the hydrogels. Thus, starch-based hydrogel is an alternative sorbent to remove and recover PTMs from wastewater.

增强玉米淀粉水凝胶对潜在有毒金属的有效吸附:直链淀粉和支链淀粉含量的作用
本研究考察了玉米淀粉直链淀粉/支链淀粉含量对柠檬酸三钠交联水凝胶吸附潜在有毒金属的影响。结果表明,直链淀粉含量和交联度之间存在明显的关系,从而影响水凝胶的性质。高直链淀粉(70 wt.%)和低支链淀粉(30 wt.%)含量的水凝胶(Hylon VII®)具有高交联度(0.297)、良好的热稳定性和吸水性(72.71%),具有半结晶结构。另一方面,低直链淀粉(1.8 wt.%)和高支链淀粉(98.2% wt.%)含量的水凝胶(Amisol 4000®)表现出最低的交联度(0.109),吸水率(49.77%)和高溶解度(46%),这使得其在水介质中的稳定性较低,难以适用。直链淀粉(28 wt.%)和支链淀粉(72 wt.%)含量的影响表明,Amisol 3408®水凝胶具有较高的吸附PTMs的潜力,其亲和顺序为:Cu2+ (68.62%) > Cd2+ (63.13%) > Mn2+ (37.36%) > Zn2+ (26.61%) > Cr6+(16.80%)。吸附机理可能是水凝胶中Cu2+/Cd2+/Mn2+/Zn2+与H+的离子交换。因此,淀粉基水凝胶是去除和回收废水中ptm的一种替代吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信