Muhammad Zeshan, Salma Eman, Ahmed M. Fallatah, Mohamed M. Ibrahim, Abdulraheem SA Almalki, Muhammad Aslam, Zeinhom M. El-Bahy
{"title":"Facile fabrication of binary metal chalcogenides (MS@NS) for supercapacitors applications via hydrothermal route","authors":"Muhammad Zeshan, Salma Eman, Ahmed M. Fallatah, Mohamed M. Ibrahim, Abdulraheem SA Almalki, Muhammad Aslam, Zeinhom M. El-Bahy","doi":"10.1007/s10971-025-06665-0","DOIUrl":null,"url":null,"abstract":"<div><p>This work conducts an experimental comparison of various binary transition metal selenides (BTMSe’s) to discover promising materials for supercapacitor (SCs) electrodes. Researchers are currently investigating the potential of selenide-based materials and their nanostructures in the realm of energy storage devices. Although, there is limited research examining the practicality of employing BTMSe’s as electrode materials. Herein, selenide-based materials such as MnSe, NbSe<sub>2</sub> and their nanocomposite MnSe@NbSe<sub>2</sub> were synthesized via the hydrothermal technique. Supercapacitors (SCs) with exceptional characteristics were observed, notably outstanding cycling stability exceeding 6000th cycle, specific energy (58.72 Wh kg<sup>−1</sup>), specific power (281 Wh kg<sup>−1</sup>), and specific capacitance (<i>C</i><sub>sp</sub>) of 2079 F g<sup>−1</sup> at 1 A g<sup>−1</sup>, as indicated by thorough analysis. There is a significant consensus in material synthesis methods and a plethora of new insights into the charge-storage process in emerging capacitive electrodes for future storage devices.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 3","pages":"855 - 867"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-025-06665-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This work conducts an experimental comparison of various binary transition metal selenides (BTMSe’s) to discover promising materials for supercapacitor (SCs) electrodes. Researchers are currently investigating the potential of selenide-based materials and their nanostructures in the realm of energy storage devices. Although, there is limited research examining the practicality of employing BTMSe’s as electrode materials. Herein, selenide-based materials such as MnSe, NbSe2 and their nanocomposite MnSe@NbSe2 were synthesized via the hydrothermal technique. Supercapacitors (SCs) with exceptional characteristics were observed, notably outstanding cycling stability exceeding 6000th cycle, specific energy (58.72 Wh kg−1), specific power (281 Wh kg−1), and specific capacitance (Csp) of 2079 F g−1 at 1 A g−1, as indicated by thorough analysis. There is a significant consensus in material synthesis methods and a plethora of new insights into the charge-storage process in emerging capacitive electrodes for future storage devices.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.