Amir Kazemi, Mohammad Hossein Afshari, Hasan Baesmat, Saber Keshavarz, Fateme Zeinali, Shahla Zahiri, Elahe Torabi, Faranak Manteghi, Sohrab Rohani
{"title":"Room-Temperature Synthesis of pH-Responsive MOF Nanocarriers for Targeted Drug Delivery in Cancer Therapy","authors":"Amir Kazemi, Mohammad Hossein Afshari, Hasan Baesmat, Saber Keshavarz, Fateme Zeinali, Shahla Zahiri, Elahe Torabi, Faranak Manteghi, Sohrab Rohani","doi":"10.1007/s10924-025-03496-6","DOIUrl":null,"url":null,"abstract":"<div><p>The synthesis of nanoscale metal-organic frameworks (MOFs) is emerging as a promising method for targeted drug delivery in cancer therapy. In this study, unlike conventional solvothermal methods that require high temperatures, room-temperature synthesis of two Zn-MOF-74 variants was achieved using zinc nitrate and zinc acetate with triethylamine (TEA). The use of different anions allows precise control over the morphology and particle size of the MOF, optimizing drug loading in nanocarriers. Drug loading and release were evaluated using 5-fluorouracil (5-FU) as a model drug in both aqueous and ethanolic environments. The results showed that Zn-MOF-74 prepared with zinc acetate (R<sub>A</sub>-MOF-74) at a 1:1 drug-to-nanocarrier ratio in ethanol exhibited superior drug adsorption and release characteristics. To enhance biocompatibility and controlled release, R<sub>A</sub>-MOF-74 nanocarriers were coated with two biodegradable polymers, sodium alginate (ALG) and polydopamine (PDA), to improve stability at low pH and enhance release control. The release profiles of 5-FU from R<sub>A</sub>-MOF-74 and its coated samples (PDA and ALG) were evaluated at different pH levels. In uncoated R<sub>A</sub>-MOF-74, drug release at pH 7.4 and 8 was 48.4% and 59.1%, respectively, reaching 100% at pH 1.5. For the coated samples, 5-FU@R<sub>A</sub>-MOF-74/ALG released 19.8% and 45.9% at pH 1.5 and 8, respectively, while 5-FU@R<sub>A</sub>-MOF-74/PDA showed 25.2% and 40.8% release at pH 7.4 and 5.5. These results clearly highlight pH-sensitive release and the role of biocompatible coatings in enhancing controlled drug release, demonstrating the potential of Zn-MOF-74 with controlled morphology for pH-responsive delivery of 5-FU in cancer therapy, paving the way for future in vivo applications.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 3","pages":"1505 - 1516"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03496-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of nanoscale metal-organic frameworks (MOFs) is emerging as a promising method for targeted drug delivery in cancer therapy. In this study, unlike conventional solvothermal methods that require high temperatures, room-temperature synthesis of two Zn-MOF-74 variants was achieved using zinc nitrate and zinc acetate with triethylamine (TEA). The use of different anions allows precise control over the morphology and particle size of the MOF, optimizing drug loading in nanocarriers. Drug loading and release were evaluated using 5-fluorouracil (5-FU) as a model drug in both aqueous and ethanolic environments. The results showed that Zn-MOF-74 prepared with zinc acetate (RA-MOF-74) at a 1:1 drug-to-nanocarrier ratio in ethanol exhibited superior drug adsorption and release characteristics. To enhance biocompatibility and controlled release, RA-MOF-74 nanocarriers were coated with two biodegradable polymers, sodium alginate (ALG) and polydopamine (PDA), to improve stability at low pH and enhance release control. The release profiles of 5-FU from RA-MOF-74 and its coated samples (PDA and ALG) were evaluated at different pH levels. In uncoated RA-MOF-74, drug release at pH 7.4 and 8 was 48.4% and 59.1%, respectively, reaching 100% at pH 1.5. For the coated samples, 5-FU@RA-MOF-74/ALG released 19.8% and 45.9% at pH 1.5 and 8, respectively, while 5-FU@RA-MOF-74/PDA showed 25.2% and 40.8% release at pH 7.4 and 5.5. These results clearly highlight pH-sensitive release and the role of biocompatible coatings in enhancing controlled drug release, demonstrating the potential of Zn-MOF-74 with controlled morphology for pH-responsive delivery of 5-FU in cancer therapy, paving the way for future in vivo applications.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.