Improving rPET/PBT Bead Foam Structure via Chain Extender Modification and Blend Variance

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL
Andreas Himmelsbach, Yavuz Akdevelioglu, Mohammadreza Nofar, Holger Ruckdäschel
{"title":"Improving rPET/PBT Bead Foam Structure via Chain Extender Modification and Blend Variance","authors":"Andreas Himmelsbach,&nbsp;Yavuz Akdevelioglu,&nbsp;Mohammadreza Nofar,&nbsp;Holger Ruckdäschel","doi":"10.1007/s10924-024-03360-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the influence of the chain extender (CE) and the blend ratio on the bead foam extrusion of rPET/PBT is investigated. The shape and density of the bead foams were analyzed during extrusion using a camera scanner while the morphology of the foam was investigated using scanning electron microscopy (SEM). Melt strength and thermal behavior were also investigated with Rheotens and differential scanning calorimetry (DSC), respectively. Both chain extender and blend ratio had pronounced effect on the foaming behavior. Significant improvements were observed up to 0.8 wt.-% CE in rPET50PBT50, which achieved an average cell size of 107 ± 17 μm and a density of 182 kg/m³, representing a weight reduction of 86.4% compared to the bulk material. In addition, rPET40PBT60 with 0.8 wt.-% CE gave an average cell size of 108 ± 23 μm and a foam density of 170 kg/m³, with a comparable cell size distribution. After CE modification, the melt strength of rPET-dominant blends obtained higher values but a strong decrease in elongation was observed. In contrast, the CE-modified rPET40PBT60 and rPET30PBT70 blends exhibited much higher elongation with a moderate increase in melt strength which resulted in better bead and foam morphologies. DSC analysis revealed lowest crystallization temperature in rPET50PBT50 with deviations shifting towards higher temperatures. All blends except rPET70PBT30 shows double melting peak formation, with higher rPET formulations also exhibiting cold crystallization. These findings provide crucial insight for development of rPET/PBT foams by controlling the blend and CE composition, which is critical for achieving temperature-resistant bead foams with improved structural integrity.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 3","pages":"1517 - 1527"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10924-024-03360-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03360-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the influence of the chain extender (CE) and the blend ratio on the bead foam extrusion of rPET/PBT is investigated. The shape and density of the bead foams were analyzed during extrusion using a camera scanner while the morphology of the foam was investigated using scanning electron microscopy (SEM). Melt strength and thermal behavior were also investigated with Rheotens and differential scanning calorimetry (DSC), respectively. Both chain extender and blend ratio had pronounced effect on the foaming behavior. Significant improvements were observed up to 0.8 wt.-% CE in rPET50PBT50, which achieved an average cell size of 107 ± 17 μm and a density of 182 kg/m³, representing a weight reduction of 86.4% compared to the bulk material. In addition, rPET40PBT60 with 0.8 wt.-% CE gave an average cell size of 108 ± 23 μm and a foam density of 170 kg/m³, with a comparable cell size distribution. After CE modification, the melt strength of rPET-dominant blends obtained higher values but a strong decrease in elongation was observed. In contrast, the CE-modified rPET40PBT60 and rPET30PBT70 blends exhibited much higher elongation with a moderate increase in melt strength which resulted in better bead and foam morphologies. DSC analysis revealed lowest crystallization temperature in rPET50PBT50 with deviations shifting towards higher temperatures. All blends except rPET70PBT30 shows double melting peak formation, with higher rPET formulations also exhibiting cold crystallization. These findings provide crucial insight for development of rPET/PBT foams by controlling the blend and CE composition, which is critical for achieving temperature-resistant bead foams with improved structural integrity.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信