This work examines the thermal and flow characteristics of \(\left( {{\text{TiO}}_{2} + {\text{AgBr}} + {\text{GO}}/{\text{EG}}} \right)\) trihybrid nanofluid in the conical gap that exists between a disc and a cone. Effect of thermophoresis and particle deposition are examined to perceive the mass dissipation change on the surface. The governing equations of the problem are in the form of partial differential equations which are converted to nonlinear ordinary differential equations by applying proper scaling similarity transformations, and then the resultant equations are approximated numerically by using RKF45 technique. The interesting part of this research is to discuss the impact of various pertinent parameters on three cases namely: (1) rotating cone/disk (2) rotating cone/stationary disk and (3) stationary cone/rotating disk. The flow field, heat and mass transfer rates were analysed using graphical representations. Additionally, sensitivity analysis is performed on derived rate of heat transfer as a response function for input factors for different parameters. From the graph, it is perceived that flow field increases significantly with increase in the values of Reynolds numbers for both cone and disk rotations. Also, it is seen that temperature upsurges significantly for ascendent values of solid volume fraction of nanoparticles. It is also noticed that the sensitivity of the Nusselt number towards \(n\) is more for all the values of source/sink and for middle level values of \(n\).