Sensitivity analysis of thermal optimisation within conical gap between the cone and the surface of disk with particle deposition

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
S. Manjunatha, B. Ammani Kuttan, T. N. Tanuja
{"title":"Sensitivity analysis of thermal optimisation within conical gap between the cone and the surface of disk with particle deposition","authors":"S. Manjunatha,&nbsp;B. Ammani Kuttan,&nbsp;T. N. Tanuja","doi":"10.1007/s10973-024-13866-2","DOIUrl":null,"url":null,"abstract":"<div><p>This work examines the thermal and flow characteristics of <span>\\(\\left( {{\\text{TiO}}_{2} + {\\text{AgBr}} + {\\text{GO}}/{\\text{EG}}} \\right)\\)</span> trihybrid nanofluid in the conical gap that exists between a disc and a cone. Effect of thermophoresis and particle deposition are examined to perceive the mass dissipation change on the surface. The governing equations of the problem are in the form of partial differential equations which are converted to nonlinear ordinary differential equations by applying proper scaling similarity transformations, and then the resultant equations are approximated numerically by using RKF45 technique. The interesting part of this research is to discuss the impact of various pertinent parameters on three cases namely: (1) rotating cone/disk (2) rotating cone/stationary disk and (3) stationary cone/rotating disk. The flow field, heat and mass transfer rates were analysed using graphical representations. Additionally, sensitivity analysis is performed on derived rate of heat transfer as a response function for input factors for different parameters. From the graph, it is perceived that flow field increases significantly with increase in the values of Reynolds numbers for both cone and disk rotations. Also, it is seen that temperature upsurges significantly for ascendent values of solid volume fraction of nanoparticles. It is also noticed that the sensitivity of the Nusselt number towards <span>\\(n\\)</span> is more for all the values of source/sink and for middle level values of <span>\\(n\\)</span><i>.</i></p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"150 1","pages":"361 - 375"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13866-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work examines the thermal and flow characteristics of \(\left( {{\text{TiO}}_{2} + {\text{AgBr}} + {\text{GO}}/{\text{EG}}} \right)\) trihybrid nanofluid in the conical gap that exists between a disc and a cone. Effect of thermophoresis and particle deposition are examined to perceive the mass dissipation change on the surface. The governing equations of the problem are in the form of partial differential equations which are converted to nonlinear ordinary differential equations by applying proper scaling similarity transformations, and then the resultant equations are approximated numerically by using RKF45 technique. The interesting part of this research is to discuss the impact of various pertinent parameters on three cases namely: (1) rotating cone/disk (2) rotating cone/stationary disk and (3) stationary cone/rotating disk. The flow field, heat and mass transfer rates were analysed using graphical representations. Additionally, sensitivity analysis is performed on derived rate of heat transfer as a response function for input factors for different parameters. From the graph, it is perceived that flow field increases significantly with increase in the values of Reynolds numbers for both cone and disk rotations. Also, it is seen that temperature upsurges significantly for ascendent values of solid volume fraction of nanoparticles. It is also noticed that the sensitivity of the Nusselt number towards \(n\) is more for all the values of source/sink and for middle level values of \(n\).

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信