Functional and structural insights into α-L-Rhamnosidase: cloning, characterization, and decoding evolutionary constraints through structural motif

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Yupeng Liang, Yalan Zhao, Zhongwei Yin, Xin Zeng, Xiulin Han, Mengliang Wen
{"title":"Functional and structural insights into α-L-Rhamnosidase: cloning, characterization, and decoding evolutionary constraints through structural motif","authors":"Yupeng Liang,&nbsp;Yalan Zhao,&nbsp;Zhongwei Yin,&nbsp;Xin Zeng,&nbsp;Xiulin Han,&nbsp;Mengliang Wen","doi":"10.1007/s00203-025-04259-6","DOIUrl":null,"url":null,"abstract":"<div><p><i>α</i>-<span>L</span>-rhamnosidase [E.C. 3.2.1.40] is important in various industrial and biotechnological applications. However, limited knowledge of the structural features of its active site residues and their local geometric arrangements during substrate interaction hinders further application development. In this study, we examined functionally characterized microbial <i>α</i>-<span>L</span>-rhamnosidases. Despite considerable differences in their global structures, the local structures of the substrate-binding sites and key residues were highly conserved. Using the local structural motif, we characterized <i>α</i>-<span>L</span>-rhamnosidase genes from metagenomic samples of traditional fermentation starters. To comprehensively understand the distribution of <i>α</i>-<span>L</span>-rhamnosidases with this motif in the AlphaFold database, we screened 26,858 <i>α</i>-<span>L</span>-rhamnosidase structures. Our findings showed that only 5678 out of 26,858 structures contain the specific conserved motifs, emphasizing their potential significance in mining enzyme function. Moreover, the analysis of structural diversity among representative enzymes demonstrated variation in the number and types of domains within this enzyme family. Further investigation of representative <i>α</i>-L-rhamnosidase sequences with this structural motif confirmed the evolutionary constraints of 15 key residues, indicating strong selective pressures to maintain these elements essential for enzyme functionality. These residues were consistently present across ancestral sequences, underscoring their importance throughout the enzyme’s evolutionary history. This study suggests that structure-guided approaches are valuable for discovering functional enzymes. Identifying conserved motif across diverse microbial taxa not only aids in predicting enzyme functionality but also offers opportunities for enzyme engineering and biotechnological applications.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-025-04259-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

α-L-rhamnosidase [E.C. 3.2.1.40] is important in various industrial and biotechnological applications. However, limited knowledge of the structural features of its active site residues and their local geometric arrangements during substrate interaction hinders further application development. In this study, we examined functionally characterized microbial α-L-rhamnosidases. Despite considerable differences in their global structures, the local structures of the substrate-binding sites and key residues were highly conserved. Using the local structural motif, we characterized α-L-rhamnosidase genes from metagenomic samples of traditional fermentation starters. To comprehensively understand the distribution of α-L-rhamnosidases with this motif in the AlphaFold database, we screened 26,858 α-L-rhamnosidase structures. Our findings showed that only 5678 out of 26,858 structures contain the specific conserved motifs, emphasizing their potential significance in mining enzyme function. Moreover, the analysis of structural diversity among representative enzymes demonstrated variation in the number and types of domains within this enzyme family. Further investigation of representative α-L-rhamnosidase sequences with this structural motif confirmed the evolutionary constraints of 15 key residues, indicating strong selective pressures to maintain these elements essential for enzyme functionality. These residues were consistently present across ancestral sequences, underscoring their importance throughout the enzyme’s evolutionary history. This study suggests that structure-guided approaches are valuable for discovering functional enzymes. Identifying conserved motif across diverse microbial taxa not only aids in predicting enzyme functionality but also offers opportunities for enzyme engineering and biotechnological applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Microbiology
Archives of Microbiology 生物-微生物学
CiteScore
4.90
自引率
3.60%
发文量
601
审稿时长
3 months
期刊介绍: Research papers must make a significant and original contribution to microbiology and be of interest to a broad readership. The results of any experimental approach that meets these objectives are welcome, particularly biochemical, molecular genetic, physiological, and/or physical investigations into microbial cells and their interactions with their environments, including their eukaryotic hosts. Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published. Theoretical papers and those that report on the analysis or ''mining'' of data are acceptable in principle if new information, interpretations, or hypotheses emerge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信