{"title":"Domination of nonlinear semigroups generated by regular, local Dirichlet forms","authors":"Ralph Chill, Burkhard Claus","doi":"10.1007/s10231-024-01478-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we study perturbations of local, nonlinear Dirichlet forms on arbitrary topological measure spaces. As a main result, we show that the semigroup generated by a local, regular, nonlinear Dirichlet form <span>\\({\\mathcal {E}}\\)</span> dominates the semigroup generated by another local functional <span>\\({\\mathcal {F}}\\)</span> if, and only if, <span>\\({\\mathcal {F}}\\)</span> is a specific zero order perturbation of <span>\\({\\mathcal {E}}\\)</span>. On the way, we prove a nonlinear version of the Riesz–Markov representation theorem, we define an abstract boundary of a topological measure space, and apply the notion of nonlinear capacity. The main result helps to classify the perturbations that lie between Neumann and Dirichlet boundary conditions.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 1","pages":"163 - 188"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01478-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01478-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article we study perturbations of local, nonlinear Dirichlet forms on arbitrary topological measure spaces. As a main result, we show that the semigroup generated by a local, regular, nonlinear Dirichlet form \({\mathcal {E}}\) dominates the semigroup generated by another local functional \({\mathcal {F}}\) if, and only if, \({\mathcal {F}}\) is a specific zero order perturbation of \({\mathcal {E}}\). On the way, we prove a nonlinear version of the Riesz–Markov representation theorem, we define an abstract boundary of a topological measure space, and apply the notion of nonlinear capacity. The main result helps to classify the perturbations that lie between Neumann and Dirichlet boundary conditions.
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.