Domination of nonlinear semigroups generated by regular, local Dirichlet forms

IF 1 3区 数学 Q1 MATHEMATICS
Ralph Chill, Burkhard Claus
{"title":"Domination of nonlinear semigroups generated by regular, local Dirichlet forms","authors":"Ralph Chill,&nbsp;Burkhard Claus","doi":"10.1007/s10231-024-01478-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we study perturbations of local, nonlinear Dirichlet forms on arbitrary topological measure spaces. As a main result, we show that the semigroup generated by a local, regular, nonlinear Dirichlet form <span>\\({\\mathcal {E}}\\)</span> dominates the semigroup generated by another local functional <span>\\({\\mathcal {F}}\\)</span> if, and only if, <span>\\({\\mathcal {F}}\\)</span> is a specific zero order perturbation of <span>\\({\\mathcal {E}}\\)</span>. On the way, we prove a nonlinear version of the Riesz–Markov representation theorem, we define an abstract boundary of a topological measure space, and apply the notion of nonlinear capacity. The main result helps to classify the perturbations that lie between Neumann and Dirichlet boundary conditions.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 1","pages":"163 - 188"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01478-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01478-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we study perturbations of local, nonlinear Dirichlet forms on arbitrary topological measure spaces. As a main result, we show that the semigroup generated by a local, regular, nonlinear Dirichlet form \({\mathcal {E}}\) dominates the semigroup generated by another local functional \({\mathcal {F}}\) if, and only if, \({\mathcal {F}}\) is a specific zero order perturbation of \({\mathcal {E}}\). On the way, we prove a nonlinear version of the Riesz–Markov representation theorem, we define an abstract boundary of a topological measure space, and apply the notion of nonlinear capacity. The main result helps to classify the perturbations that lie between Neumann and Dirichlet boundary conditions.

正则局部狄利克雷形式生成的非线性半群的控制
本文研究了任意拓扑测度空间上局部非线性狄利克雷形式的摄动。作为主要结果,我们证明了由局部正则非线性狄利克雷形式\({\mathcal {E}}\)生成的半群优于由另一个局部泛函\({\mathcal {F}}\)生成的半群,当且仅当\({\mathcal {F}}\)是\({\mathcal {E}}\)的特定零阶摄动。在此过程中,我们证明了Riesz-Markov表示定理的一个非线性版本,我们定义了一个拓扑测度空间的抽象边界,并应用了非线性容量的概念。主要结果有助于对处于诺伊曼和狄利克雷边界条件之间的微扰进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信