Hafiz Muhammad Shahbaz, Iftikhar Ahmad, Muhammad Asif Zahoor Raja, Hira Ilyas, Kottakkaran Sooppy Nisar, Muhammad Shoaib
{"title":"3D thermally laminated MHD non-Newtonian nanofluids across a stretched sheet: intelligent computing paradigm","authors":"Hafiz Muhammad Shahbaz, Iftikhar Ahmad, Muhammad Asif Zahoor Raja, Hira Ilyas, Kottakkaran Sooppy Nisar, Muhammad Shoaib","doi":"10.1007/s10973-024-13747-8","DOIUrl":null,"url":null,"abstract":"<div><p>The primary subject of this article is the study of the viscous flow of nanofluids consisting of copper-methanol and water in the presence of a three-dimensional stretched sheet, which is subjected to magnetohydrodynamic effects (3D-MHD-NF) by employing artificial recurrent neural networks that are optimized using a Bayesian regularization technique (ARNN-BR). The viscosity effect is recognized to be dependent on temperature, with methanol and water being used as the base fluid. The presented model is employed in the manipulation and creation of surfaces within the field of nanotechnology. Its applications include stretching, shrinking, wrapping, and painting devices. The Adams method was employed to generate a dataset for the 3D-MHD-NF model for four scenarios by varying the Hartmann number (<i>H</i>), volume fraction of nanoparticle (<span>\\(\\varphi\\)</span>), and viscosity parameter (<i>α</i>). The ARNN-BR technique employed a random selection of data 70% for training, 20% for testing, and 10% for validity. It has been found that boundary layer becomes thinner as the volume percentage of nanoparticle increases. Additionally, it is observed that augmentation in the viscosity parameter results in a proportional rise in temperature. Moreover, it is observed that increment in the variables <i>H</i>, <i>φ</i>, and <i>α</i> have an impact on the velocity boundary thickness in both the <i>x-</i> and <i>y</i>-directions. The newly introduced ARNN-BR technique's dependability, stability, and convergence were assessed using a fitness measure based on mean squares errors, histogram drawings, regression, input-error cross-correlation, and autocorrelation analysis for each scenario of the 3D-MHD-NF model.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"150 1","pages":"479 - 504"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13747-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The primary subject of this article is the study of the viscous flow of nanofluids consisting of copper-methanol and water in the presence of a three-dimensional stretched sheet, which is subjected to magnetohydrodynamic effects (3D-MHD-NF) by employing artificial recurrent neural networks that are optimized using a Bayesian regularization technique (ARNN-BR). The viscosity effect is recognized to be dependent on temperature, with methanol and water being used as the base fluid. The presented model is employed in the manipulation and creation of surfaces within the field of nanotechnology. Its applications include stretching, shrinking, wrapping, and painting devices. The Adams method was employed to generate a dataset for the 3D-MHD-NF model for four scenarios by varying the Hartmann number (H), volume fraction of nanoparticle (\(\varphi\)), and viscosity parameter (α). The ARNN-BR technique employed a random selection of data 70% for training, 20% for testing, and 10% for validity. It has been found that boundary layer becomes thinner as the volume percentage of nanoparticle increases. Additionally, it is observed that augmentation in the viscosity parameter results in a proportional rise in temperature. Moreover, it is observed that increment in the variables H, φ, and α have an impact on the velocity boundary thickness in both the x- and y-directions. The newly introduced ARNN-BR technique's dependability, stability, and convergence were assessed using a fitness measure based on mean squares errors, histogram drawings, regression, input-error cross-correlation, and autocorrelation analysis for each scenario of the 3D-MHD-NF model.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.