Exploring the frontiers of emerging sensing of silver nanoprisms: recent progress and challenges

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-02-17 DOI:10.1039/D4RA08469A
Houman Kholafazad Kordasht, Parinaz Bahavarnia, Farnaz Bahavarnia, Mohammad Hasanzadeh and Nasrin Shadjou
{"title":"Exploring the frontiers of emerging sensing of silver nanoprisms: recent progress and challenges","authors":"Houman Kholafazad Kordasht, Parinaz Bahavarnia, Farnaz Bahavarnia, Mohammad Hasanzadeh and Nasrin Shadjou","doi":"10.1039/D4RA08469A","DOIUrl":null,"url":null,"abstract":"<p >In recent years, the development and use of nanomaterials have transformed numerous aspects of biomedical science. Nanomaterials have played a pivotal role in advancing disease diagnosis and treatment across a wide range of applications. Within this scope, silver nanoprisms (AgNPrs) stand out due to their remarkable properties, such as extensive surface area, chemical robustness, and tunable electrical conductivity, making them excellent candidates for biomedical purposes. By tailoring these nanomaterials through functionalization or coating surface, their multifunctionality can be enhanced, unlocking new opportunities for their application in areas such as diagnosis, imaging, and therapeutic intervention. This review begins with an overview of AgNPrs' synthesis techniques and their unique physicochemical characteristics. Recent advancements in analytical methods utilizing AgNPrs, categorized by sensing mechanisms such as optical and electrochemical approaches, are highlighted in the context of diagnostics. Lastly, the challenges and future prospects of bringing AgNPr-based technologies to commercialization and integrating them into disease diagnostics and medical treatment are explored. The integration of AgNPrs in disease therapy holds promise for the development of advanced chemotherapy agents that effectively address the challenges of efficient cancer treatment looking ahead, the ongoing advancement of nanocarrier systems comprising AgNPrs-based molecules holds great promise for improving the quality of life for patients worldwide.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 7","pages":" 5105-5116"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra08469a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra08469a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the development and use of nanomaterials have transformed numerous aspects of biomedical science. Nanomaterials have played a pivotal role in advancing disease diagnosis and treatment across a wide range of applications. Within this scope, silver nanoprisms (AgNPrs) stand out due to their remarkable properties, such as extensive surface area, chemical robustness, and tunable electrical conductivity, making them excellent candidates for biomedical purposes. By tailoring these nanomaterials through functionalization or coating surface, their multifunctionality can be enhanced, unlocking new opportunities for their application in areas such as diagnosis, imaging, and therapeutic intervention. This review begins with an overview of AgNPrs' synthesis techniques and their unique physicochemical characteristics. Recent advancements in analytical methods utilizing AgNPrs, categorized by sensing mechanisms such as optical and electrochemical approaches, are highlighted in the context of diagnostics. Lastly, the challenges and future prospects of bringing AgNPr-based technologies to commercialization and integrating them into disease diagnostics and medical treatment are explored. The integration of AgNPrs in disease therapy holds promise for the development of advanced chemotherapy agents that effectively address the challenges of efficient cancer treatment looking ahead, the ongoing advancement of nanocarrier systems comprising AgNPrs-based molecules holds great promise for improving the quality of life for patients worldwide.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信