{"title":"A 6.5-GHz Power-Efficient Two-Stage Feedforward Self-Interference Cancellation Receiver","authors":"Teng-Shen Yang;Yi-Chieh Chang;Liang-Hung Lu","doi":"10.1109/LMWT.2024.3519758","DOIUrl":null,"url":null,"abstract":"This letter presents a two-stage feedforward (FF) power-efficient self-interference cancellation (SIC) frequency-division duplex (FDD) receiver at the 6.5-GHz band for 5G deployment. The first stage employs a transformer-feedback low-noise amplifier (LNA) that effectively reduces additional noise sources from the subsequent SIC stage, resulting in a low noise figure (NF) and low power consumption. In the second stage, the SIC path includes two passive mixers and a baseband variable gain amplifier (VGA) to attenuate the strong interfering signal from the transmitter. In addition, a passive-mixer-like transmission gate (PML-TG) is incorporated to ensure the synchronization of timing alignment between the main receiver path and the SIC path. Fabricated in a 0.18-<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>m technology, this work demonstrates 25 dB of SIC at 200-MHz offset with a signal bandwidth of 160 MHz. The proposed circuit can operate at a transmitter interference level of up to 20 dBm while consuming only 23.8 mW of dc power.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 2","pages":"249-252"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10817620/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This letter presents a two-stage feedforward (FF) power-efficient self-interference cancellation (SIC) frequency-division duplex (FDD) receiver at the 6.5-GHz band for 5G deployment. The first stage employs a transformer-feedback low-noise amplifier (LNA) that effectively reduces additional noise sources from the subsequent SIC stage, resulting in a low noise figure (NF) and low power consumption. In the second stage, the SIC path includes two passive mixers and a baseband variable gain amplifier (VGA) to attenuate the strong interfering signal from the transmitter. In addition, a passive-mixer-like transmission gate (PML-TG) is incorporated to ensure the synchronization of timing alignment between the main receiver path and the SIC path. Fabricated in a 0.18-$\mu $ m technology, this work demonstrates 25 dB of SIC at 200-MHz offset with a signal bandwidth of 160 MHz. The proposed circuit can operate at a transmitter interference level of up to 20 dBm while consuming only 23.8 mW of dc power.