{"title":"1–5 GHz 3.5-bit GaN MMIC Variable Attenuator With 55 dB Range","authors":"Seth Johannes;Kenneth E. Kolodziej;Zoya Popović","doi":"10.1109/LMWT.2024.3508475","DOIUrl":null,"url":null,"abstract":"This letter presents a 3.5-bit variable attenuator (VA) MMIC that operates from 1–5 GHz. The MMIC is implemented in the Qorvo 250 nm BCB2 GaN-on-SiC process. An attenuation range of 55 dB in steps of 5 dB is achieved with resistive T networks and HEMT switch devices. The bit values are implemented with 5, 10, and 20/40 networks. The 20 and 40 dB resistive networks are combined into a single network, with the attenuation level determined by a switchable shunt resistance, resulting in an additional half bit. For the desired <inline-formula> <tex-math>$10~\\Omega $ </tex-math></inline-formula> and <inline-formula> <tex-math>$1~\\Omega $ </tex-math></inline-formula> shunt resistance values of the 20 and 40 dB T networks, the <inline-formula> <tex-math>$R_{\\mathrm { on}}$ </tex-math></inline-formula> of the shunt switch devices are used, balancing the <inline-formula> <tex-math>$R_{\\mathrm { on}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$C_{\\mathrm { off}}$ </tex-math></inline-formula> of the device. The VA demonstrates all 11 attenuation states with a return loss better than 10 dB across all states within a 5:1 frequency range and a minimum input P1dB of 34 dBm.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 2","pages":"253-256"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10781419/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This letter presents a 3.5-bit variable attenuator (VA) MMIC that operates from 1–5 GHz. The MMIC is implemented in the Qorvo 250 nm BCB2 GaN-on-SiC process. An attenuation range of 55 dB in steps of 5 dB is achieved with resistive T networks and HEMT switch devices. The bit values are implemented with 5, 10, and 20/40 networks. The 20 and 40 dB resistive networks are combined into a single network, with the attenuation level determined by a switchable shunt resistance, resulting in an additional half bit. For the desired $10~\Omega $ and $1~\Omega $ shunt resistance values of the 20 and 40 dB T networks, the $R_{\mathrm { on}}$ of the shunt switch devices are used, balancing the $R_{\mathrm { on}}$ and $C_{\mathrm { off}}$ of the device. The VA demonstrates all 11 attenuation states with a return loss better than 10 dB across all states within a 5:1 frequency range and a minimum input P1dB of 34 dBm.