OFDM-Based Remote Sensing Using the 4-D Modified Matrix Pencil Method

Samuel P. Lavery;Tharmalingam Ratnarajah
{"title":"OFDM-Based Remote Sensing Using the 4-D Modified Matrix Pencil Method","authors":"Samuel P. Lavery;Tharmalingam Ratnarajah","doi":"10.1109/TRS.2025.3532831","DOIUrl":null,"url":null,"abstract":"Increased demands from communications and remote sensing systems on a limited radio frequency (RF) spectrum motivate design of dual-function radar communications (DFRC) systems. Simultaneously performing dual functions from one system circumvents cross-system interference. Orthogonal frequency-division multiplexing (OFDM) waveforms are common in telecommunications, and echoes from targets can be compared with a transmitted signal to isolate phase shifts related to targets’ ranges, velocities, azimuth angles, and elevation angles. By extending the modified matrix enhancement matrix pencil (MMEMP) technique to four dimensions, and compensating for intercarrier interference (ICI), this article presents a method of estimating the phase shifts and thereby the target parameters. The Cramér-Rao lower bound (CRLB) is derived, and differently parameterized fifth-generation new radio (5G NR)-inspired systems are simulated, demonstrating superior precision to Fourier- and multiple signal classification (MUSIC)-based parameter estimation with a much smaller time-frequency resource block.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"318-331"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10849973/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Increased demands from communications and remote sensing systems on a limited radio frequency (RF) spectrum motivate design of dual-function radar communications (DFRC) systems. Simultaneously performing dual functions from one system circumvents cross-system interference. Orthogonal frequency-division multiplexing (OFDM) waveforms are common in telecommunications, and echoes from targets can be compared with a transmitted signal to isolate phase shifts related to targets’ ranges, velocities, azimuth angles, and elevation angles. By extending the modified matrix enhancement matrix pencil (MMEMP) technique to four dimensions, and compensating for intercarrier interference (ICI), this article presents a method of estimating the phase shifts and thereby the target parameters. The Cramér-Rao lower bound (CRLB) is derived, and differently parameterized fifth-generation new radio (5G NR)-inspired systems are simulated, demonstrating superior precision to Fourier- and multiple signal classification (MUSIC)-based parameter estimation with a much smaller time-frequency resource block.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信