Jinping Zhang , Jingchun Shen , Junyi Fang , Lei Chen , Chang’an Wang , Defu Che
{"title":"Study on NOx formation and ash characteristics during co-combustion of semi-coke and biomass under O2/CO2 conditions","authors":"Jinping Zhang , Jingchun Shen , Junyi Fang , Lei Chen , Chang’an Wang , Defu Che","doi":"10.1016/j.fuel.2025.134717","DOIUrl":null,"url":null,"abstract":"<div><div>Oxy-fuel co-combustion of semi-coke and biomass has emerged as a promising and environmentally sustainable avenue for reducing carbon emissions and realizing the resource utilization of solid waste. However, the underlying mechanisms of N-containing pollutants release and ash formation during co-combustion process remain somewhat unclear. Herein, the intricate characteristics of NO<em><sub>x</sub></em> formation and ash-related behavior during oxy-fuel co-combustion of semi-coke (SC) and three typical biomass (rice hull (RH), pine wood (PW) and walnut shell (WS)) were investigated based on the effects of various parameters, including blending ratio, temperature and atmosphere in this research. The results show that the minerals in biomass could efficiently inhibit the NO<em><sub>x</sub></em> formation through facilitating the reduction of NO<em><sub>x</sub></em> to N<sub>2</sub>, and increasing the biomass blending ratio would lead to a significant decrease of NO<em><sub>x</sub></em> emission. Additionally, the conversion of fuel-N to NO<em><sub>x</sub></em> demonstrated a consistent upward trend with increasing temperature from 900 °C to 1350 °C. Significant decreases of NO<em><sub>x</sub></em> are detected when adjusting the ratio of O<sub>2</sub>/CO<sub>2</sub>, with an optimal O<sub>2</sub> concentration at 30 %. The biomass type and combustion atmosphere contributed greatly to chemical compositions and slagging propensity of the ash. In comparison with RH, PW and WS exhibited notably higher slagging propensity of ash under test conditions. Moreover, increasing the O<sub>2</sub> concentration in O<sub>2</sub>/CO<sub>2</sub> atmosphere would elevate the slagging propensity of ash by promoting the formation of calcium sulfate, which subsequently fostered the development of additional low-temperature eutectics. This study provides theoretical support for developing the fuel value of biomass and semi-coke, enabling collaborative disposal approaches and ultimately realizing carbon peak in thermal power industry.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"390 ","pages":"Article 134717"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125004417","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Oxy-fuel co-combustion of semi-coke and biomass has emerged as a promising and environmentally sustainable avenue for reducing carbon emissions and realizing the resource utilization of solid waste. However, the underlying mechanisms of N-containing pollutants release and ash formation during co-combustion process remain somewhat unclear. Herein, the intricate characteristics of NOx formation and ash-related behavior during oxy-fuel co-combustion of semi-coke (SC) and three typical biomass (rice hull (RH), pine wood (PW) and walnut shell (WS)) were investigated based on the effects of various parameters, including blending ratio, temperature and atmosphere in this research. The results show that the minerals in biomass could efficiently inhibit the NOx formation through facilitating the reduction of NOx to N2, and increasing the biomass blending ratio would lead to a significant decrease of NOx emission. Additionally, the conversion of fuel-N to NOx demonstrated a consistent upward trend with increasing temperature from 900 °C to 1350 °C. Significant decreases of NOx are detected when adjusting the ratio of O2/CO2, with an optimal O2 concentration at 30 %. The biomass type and combustion atmosphere contributed greatly to chemical compositions and slagging propensity of the ash. In comparison with RH, PW and WS exhibited notably higher slagging propensity of ash under test conditions. Moreover, increasing the O2 concentration in O2/CO2 atmosphere would elevate the slagging propensity of ash by promoting the formation of calcium sulfate, which subsequently fostered the development of additional low-temperature eutectics. This study provides theoretical support for developing the fuel value of biomass and semi-coke, enabling collaborative disposal approaches and ultimately realizing carbon peak in thermal power industry.
期刊介绍:
The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.