Low-temperature CO2 methanation over SiO2 supported Ni catalysts derived from sol-gel precursors: Effect of pretreatment process

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-02-17 DOI:10.1016/j.fuel.2025.134651
Yanpeng Pei , Xinyan Qiu , Li Wang , Sibudjing Kawi
{"title":"Low-temperature CO2 methanation over SiO2 supported Ni catalysts derived from sol-gel precursors: Effect of pretreatment process","authors":"Yanpeng Pei ,&nbsp;Xinyan Qiu ,&nbsp;Li Wang ,&nbsp;Sibudjing Kawi","doi":"10.1016/j.fuel.2025.134651","DOIUrl":null,"url":null,"abstract":"<div><div>CO<sub>2</sub> methanation is a promising approach for simultaneously valorizing CO<sub>2</sub> while displacing fossil-derived methane. Although Ni is a well-known earth-abundant methanation catalyst, achieving high activity at low reaction temperatures requires a combination of well-dispersed Ni, proper basicity, and abundant surface oxygen vacancies that is often difficult to achieve over an inert support such as SiO<sub>2</sub>. Here, we demonstrate the synthesis of active, selective, and stable SiO<sub>2</sub>-supported Ni (Ni/SiO<sub>2</sub>) catalysts for low-temperature methanation via the direct H<sub>2</sub> reduction of dried sol–gel precursors. At the optimal H<sub>2</sub> reduction temperature of 400 °C, above 40 % CO<sub>2</sub> conversion and essentially 100 % methane selectivity could be achieved at a reaction temperature of 200 °C (P = 1 bar and GHSV = 8,000 mL⋅g<sub>cat.</sub><sup>−1</sup>⋅h<sup>−1</sup>). A comprehensive suite of characterizations revealed well-dispersed Ni together with moderate basicity engendered by Ni-O-Si sites. Notably, these Ni-O-Si sites are lost upon air calcination or partially destroyed under higher-temperature H<sub>2</sub> pretreatment, highlighting the important effect of pretreatment conditions on catalyst performance. Further, in-situ DRIFTS analysis linked the superior performance of the best catalyst to a high concentration of surface carbonyl intermediates. Overall, these findings not only provide valuable insights into sol–gel syntheses and low-temperature CO<sub>2</sub> methanation, but also reveal a simple, scalable, and cost-effective route towards low-temperature methanation catalysts with prospective industrial applications.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"390 ","pages":"Article 134651"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125003758","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 methanation is a promising approach for simultaneously valorizing CO2 while displacing fossil-derived methane. Although Ni is a well-known earth-abundant methanation catalyst, achieving high activity at low reaction temperatures requires a combination of well-dispersed Ni, proper basicity, and abundant surface oxygen vacancies that is often difficult to achieve over an inert support such as SiO2. Here, we demonstrate the synthesis of active, selective, and stable SiO2-supported Ni (Ni/SiO2) catalysts for low-temperature methanation via the direct H2 reduction of dried sol–gel precursors. At the optimal H2 reduction temperature of 400 °C, above 40 % CO2 conversion and essentially 100 % methane selectivity could be achieved at a reaction temperature of 200 °C (P = 1 bar and GHSV = 8,000 mL⋅gcat.−1⋅h−1). A comprehensive suite of characterizations revealed well-dispersed Ni together with moderate basicity engendered by Ni-O-Si sites. Notably, these Ni-O-Si sites are lost upon air calcination or partially destroyed under higher-temperature H2 pretreatment, highlighting the important effect of pretreatment conditions on catalyst performance. Further, in-situ DRIFTS analysis linked the superior performance of the best catalyst to a high concentration of surface carbonyl intermediates. Overall, these findings not only provide valuable insights into sol–gel syntheses and low-temperature CO2 methanation, but also reveal a simple, scalable, and cost-effective route towards low-temperature methanation catalysts with prospective industrial applications.

Abstract Image

溶胶-凝胶前驱体制备的二氧化硅支撑镍催化剂的低温二氧化碳甲烷化:预处理工艺的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信