Two fourth-order conservative compact difference schemes for the generalized Korteweg–de Vries–Benjamin Bona Mahony equation

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Xin Zhang , Yuanfeng Jin
{"title":"Two fourth-order conservative compact difference schemes for the generalized Korteweg–de Vries–Benjamin Bona Mahony equation","authors":"Xin Zhang ,&nbsp;Yuanfeng Jin","doi":"10.1016/j.apnum.2025.02.005","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the generalized Korteweg-de Vries–Benjamin Bona Mahony (GKdV-BBM) equation is investigated by two compact finite difference methods. One is a two-level-nonlinear difference scheme and another is a three-level-linearized difference scheme. Both of the schemes provide second and fourth-order accuracy in time and space, respectively. It is important that they preserve certain properties of the original equation, such as conservative properties. The solvability of the proposed numerical schemes is proved by Brouwer's fixed point theorem and mathematical induction, respectively. The unconditional convergence of the proposed difference schemes are also established through the discrete energy method, without imposing any restrictions on the grid ratios. Finally, numerical results are presented to confirm the theoretical findings, and they also demonstrate the efficiency and reliability of the proposed compact approaches.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"212 ","pages":"Pages 223-241"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425000297","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the generalized Korteweg-de Vries–Benjamin Bona Mahony (GKdV-BBM) equation is investigated by two compact finite difference methods. One is a two-level-nonlinear difference scheme and another is a three-level-linearized difference scheme. Both of the schemes provide second and fourth-order accuracy in time and space, respectively. It is important that they preserve certain properties of the original equation, such as conservative properties. The solvability of the proposed numerical schemes is proved by Brouwer's fixed point theorem and mathematical induction, respectively. The unconditional convergence of the proposed difference schemes are also established through the discrete energy method, without imposing any restrictions on the grid ratios. Finally, numerical results are presented to confirm the theoretical findings, and they also demonstrate the efficiency and reliability of the proposed compact approaches.
广义Korteweg-de Vries-Benjamin Bona Mahony方程的两个四阶保守紧致差分格式
本文用两种紧致有限差分方法研究了广义Korteweg-de Vries-Benjamin Bona Mahony (GKdV-BBM)方程。一种是两电平非线性差分格式,另一种是三电平线性化差分格式。这两种方案分别在时间和空间上提供二阶和四阶精度。重要的是,它们保留了原方程的某些性质,如保守性。分别用Brouwer不动点定理和数学归纳法证明了所提数值格式的可解性。通过离散能量法建立了所提差分格式的无条件收敛性,且对网格比例没有任何限制。最后,给出了数值结果来验证理论结果,并验证了所提出的紧凑方法的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信