{"title":"Global Lipschitz estimates for fully non-linear singular perturbation problems with non-homogeneous degeneracy","authors":"Elzon C. Bezerra Júnior, João Vitor da Silva","doi":"10.1016/j.jde.2025.02.020","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript investigates the global regularity of singularly perturbed unbalanced models with variable exponents. In this context, we aim to find a non-negative function <span><math><msup><mrow><mi>u</mi></mrow><mrow><mi>ϵ</mi></mrow></msup></math></span> that satisfies the following equation for each fixed <span><math><mi>ϵ</mi><mo>></mo><mn>0</mn></math></span><span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>H</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>∇</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>ϵ</mi></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>[</mo><mi>Δ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>ϵ</mi></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>b</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>⋅</mo><mi>∇</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>ϵ</mi></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>]</mo><mspace></mspace></mtd><mtd><mo>=</mo><mspace></mspace></mtd><mtd><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>ϵ</mi></mrow></msup><mo>)</mo><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace></mtd><mtd><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mi>u</mi></mrow><mrow><mi>ϵ</mi></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mspace></mspace></mtd><mtd><mo>=</mo><mspace></mspace></mtd><mtd><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mspace></mspace></mtd><mtd><mtext>on</mtext><mspace></mspace></mtd><mtd><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where Ω is a bounded regular domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, and <span><math><mi>H</mi></math></span> represents a function exhibiting a variable degeneracy signature. Additionally, <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ϵ</mi></mrow></msub></math></span> approaches the Dirac measure <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> as <em>ϵ</em> tends to zero, and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>ϵ</mi></mrow></msub></math></span> remains bounded away from zero and infinity. We aim to establish global gradient bounds that are unaffected by the parameter <em>ϵ</em>. Specifically, this family of solutions converges uniformly to a Lipschitz limiting profile associated with a one-phase Bernoulli-type free boundary problem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"428 ","pages":"Pages 623-653"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001391","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This manuscript investigates the global regularity of singularly perturbed unbalanced models with variable exponents. In this context, we aim to find a non-negative function that satisfies the following equation for each fixed where Ω is a bounded regular domain in , and represents a function exhibiting a variable degeneracy signature. Additionally, approaches the Dirac measure as ϵ tends to zero, and remains bounded away from zero and infinity. We aim to establish global gradient bounds that are unaffected by the parameter ϵ. Specifically, this family of solutions converges uniformly to a Lipschitz limiting profile associated with a one-phase Bernoulli-type free boundary problem.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics