{"title":"Neural-network-based accelerated safe Q-learning for optimal control of discrete-time nonlinear systems with state constraints","authors":"Mingming Zhao, Ding Wang, Junfei Qiao","doi":"10.1016/j.neunet.2025.107249","DOIUrl":null,"url":null,"abstract":"<div><div>For unknown nonlinear systems with state constraints, it is difficult to achieve the safe optimal control by using Q-learning methods based on traditional quadratic utility functions. To solve this problem, this article proposes an accelerated safe Q-learning (SQL) technique that addresses the concurrent requirements of safety and optimality for discrete-time nonlinear systems within an integrated framework. First, an adjustable control barrier function is designed and integrated into the cost function, aiming to facilitate the transformation of constrained optimal control problems into unconstrained cases. The augmented cost function is closely linked to the next state, enabling quicker deviation of the state from constraint boundaries. Second, leveraging offline data that adheres to safety constraints, we introduce an off-policy value iteration SQL approach for searching a safe optimal policy, thus mitigating the risk of unsafe interactions that may result from suboptimal iterative policies. Third, the vast amounts of offline data and the complex augmented cost function can hinder the learning speed of the algorithm. To address this issue, we integrate historical iteration information into the current iteration step to accelerate policy evaluation, and introduce the Nesterov Momentum technique to expedite policy improvement. Additionally, the theoretical analysis demonstrates the convergence, optimality, and safety of the SQL algorithm. Finally, under the influence of different parameters, simulation outcomes of two nonlinear systems with state constraints reveal the efficacy and advantages of the accelerated SQL approach. The proposed method requires fewer iterations while enabling the system state to converge to the equilibrium point more rapidly.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"186 ","pages":"Article 107249"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025001285","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
For unknown nonlinear systems with state constraints, it is difficult to achieve the safe optimal control by using Q-learning methods based on traditional quadratic utility functions. To solve this problem, this article proposes an accelerated safe Q-learning (SQL) technique that addresses the concurrent requirements of safety and optimality for discrete-time nonlinear systems within an integrated framework. First, an adjustable control barrier function is designed and integrated into the cost function, aiming to facilitate the transformation of constrained optimal control problems into unconstrained cases. The augmented cost function is closely linked to the next state, enabling quicker deviation of the state from constraint boundaries. Second, leveraging offline data that adheres to safety constraints, we introduce an off-policy value iteration SQL approach for searching a safe optimal policy, thus mitigating the risk of unsafe interactions that may result from suboptimal iterative policies. Third, the vast amounts of offline data and the complex augmented cost function can hinder the learning speed of the algorithm. To address this issue, we integrate historical iteration information into the current iteration step to accelerate policy evaluation, and introduce the Nesterov Momentum technique to expedite policy improvement. Additionally, the theoretical analysis demonstrates the convergence, optimality, and safety of the SQL algorithm. Finally, under the influence of different parameters, simulation outcomes of two nonlinear systems with state constraints reveal the efficacy and advantages of the accelerated SQL approach. The proposed method requires fewer iterations while enabling the system state to converge to the equilibrium point more rapidly.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.