Neural-network-based accelerated safe Q-learning for optimal control of discrete-time nonlinear systems with state constraints

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mingming Zhao, Ding Wang, Junfei Qiao
{"title":"Neural-network-based accelerated safe Q-learning for optimal control of discrete-time nonlinear systems with state constraints","authors":"Mingming Zhao,&nbsp;Ding Wang,&nbsp;Junfei Qiao","doi":"10.1016/j.neunet.2025.107249","DOIUrl":null,"url":null,"abstract":"<div><div>For unknown nonlinear systems with state constraints, it is difficult to achieve the safe optimal control by using Q-learning methods based on traditional quadratic utility functions. To solve this problem, this article proposes an accelerated safe Q-learning (SQL) technique that addresses the concurrent requirements of safety and optimality for discrete-time nonlinear systems within an integrated framework. First, an adjustable control barrier function is designed and integrated into the cost function, aiming to facilitate the transformation of constrained optimal control problems into unconstrained cases. The augmented cost function is closely linked to the next state, enabling quicker deviation of the state from constraint boundaries. Second, leveraging offline data that adheres to safety constraints, we introduce an off-policy value iteration SQL approach for searching a safe optimal policy, thus mitigating the risk of unsafe interactions that may result from suboptimal iterative policies. Third, the vast amounts of offline data and the complex augmented cost function can hinder the learning speed of the algorithm. To address this issue, we integrate historical iteration information into the current iteration step to accelerate policy evaluation, and introduce the Nesterov Momentum technique to expedite policy improvement. Additionally, the theoretical analysis demonstrates the convergence, optimality, and safety of the SQL algorithm. Finally, under the influence of different parameters, simulation outcomes of two nonlinear systems with state constraints reveal the efficacy and advantages of the accelerated SQL approach. The proposed method requires fewer iterations while enabling the system state to converge to the equilibrium point more rapidly.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"186 ","pages":"Article 107249"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025001285","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

For unknown nonlinear systems with state constraints, it is difficult to achieve the safe optimal control by using Q-learning methods based on traditional quadratic utility functions. To solve this problem, this article proposes an accelerated safe Q-learning (SQL) technique that addresses the concurrent requirements of safety and optimality for discrete-time nonlinear systems within an integrated framework. First, an adjustable control barrier function is designed and integrated into the cost function, aiming to facilitate the transformation of constrained optimal control problems into unconstrained cases. The augmented cost function is closely linked to the next state, enabling quicker deviation of the state from constraint boundaries. Second, leveraging offline data that adheres to safety constraints, we introduce an off-policy value iteration SQL approach for searching a safe optimal policy, thus mitigating the risk of unsafe interactions that may result from suboptimal iterative policies. Third, the vast amounts of offline data and the complex augmented cost function can hinder the learning speed of the algorithm. To address this issue, we integrate historical iteration information into the current iteration step to accelerate policy evaluation, and introduce the Nesterov Momentum technique to expedite policy improvement. Additionally, the theoretical analysis demonstrates the convergence, optimality, and safety of the SQL algorithm. Finally, under the influence of different parameters, simulation outcomes of two nonlinear systems with state constraints reveal the efficacy and advantages of the accelerated SQL approach. The proposed method requires fewer iterations while enabling the system state to converge to the equilibrium point more rapidly.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信