Grounded predictions of teamwork as a one-shot game: A multiagent multi-armed bandits approach

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Alejandra López de Aberasturi Gómez, Carles Sierra, Jordi Sabater-Mir
{"title":"Grounded predictions of teamwork as a one-shot game: A multiagent multi-armed bandits approach","authors":"Alejandra López de Aberasturi Gómez,&nbsp;Carles Sierra,&nbsp;Jordi Sabater-Mir","doi":"10.1016/j.artint.2025.104307","DOIUrl":null,"url":null,"abstract":"<div><div>Humans possess innate collaborative capacities. However, effective teamwork often remains challenging. This study delves into the feasibility of collaboration within teams of rational, self-interested agents who engage in teamwork without the obligation to contribute. Drawing from psychological and game theoretical frameworks, we formalise teamwork as a one-shot aggregative game, integrating insights from Steiner's theory of group productivity. We characterise this novel game's Nash equilibria and propose a multiagent multi-armed bandit system that learns to converge to approximations of such equilibria. Our research contributes value to the areas of game theory and multiagent systems, paving the way for a better understanding of voluntary collaborative dynamics. We examine how team heterogeneity, task typology, and assessment difficulty influence agents' strategies and resulting teamwork outcomes. Finally, we empirically study the behaviour of work teams under incentive systems that defy analytical treatment. Our agents demonstrate human-like behaviour patterns, corroborating findings from social psychology research.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"341 ","pages":"Article 104307"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370225000268","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Humans possess innate collaborative capacities. However, effective teamwork often remains challenging. This study delves into the feasibility of collaboration within teams of rational, self-interested agents who engage in teamwork without the obligation to contribute. Drawing from psychological and game theoretical frameworks, we formalise teamwork as a one-shot aggregative game, integrating insights from Steiner's theory of group productivity. We characterise this novel game's Nash equilibria and propose a multiagent multi-armed bandit system that learns to converge to approximations of such equilibria. Our research contributes value to the areas of game theory and multiagent systems, paving the way for a better understanding of voluntary collaborative dynamics. We examine how team heterogeneity, task typology, and assessment difficulty influence agents' strategies and resulting teamwork outcomes. Finally, we empirically study the behaviour of work teams under incentive systems that defy analytical treatment. Our agents demonstrate human-like behaviour patterns, corroborating findings from social psychology research.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信