An optimised multi-level method for the pushover analysis of historic masonry structures accounting for the actual masonry pattern

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Simon Szabó , Marco Francesco Funari , Antonio Maria D’Altri , Stefano de Miranda , Paulo B. Lourenço
{"title":"An optimised multi-level method for the pushover analysis of historic masonry structures accounting for the actual masonry pattern","authors":"Simon Szabó ,&nbsp;Marco Francesco Funari ,&nbsp;Antonio Maria D’Altri ,&nbsp;Stefano de Miranda ,&nbsp;Paulo B. Lourenço","doi":"10.1016/j.compstruc.2025.107656","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose an optimised multi-level method to efficiently account for the actual masonry pattern in the pushover analysis of historic masonry structures. The method begins with a rigid block-based limit analysis accounting for the actual masonry pattern to identify realistic failure mechanisms. Next, macro-blocks that outline the failure mechanism are identified using a novel optimised procedure that includes a heuristic search, which minimises the number of blocks and non-linear interfaces in the subsequent analyses. Subsequently, macro-blocks are modelled as homogeneous material interacting via cohesive-frictional interfaces in a finite element environment where pushover analysis produces force–displacement curves. Validation against various structural benchmarks with regular and irregular masonry patterns and different loading configurations demonstrates the method’s accuracy and competitiveness compared to micro-modelling approaches. Results show up to a 90% reduction in computational time and the number of blocks, with a maximum difference of about 5% in numerical prediction of force capacity.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"310 ","pages":"Article 107656"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794925000148","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an optimised multi-level method to efficiently account for the actual masonry pattern in the pushover analysis of historic masonry structures. The method begins with a rigid block-based limit analysis accounting for the actual masonry pattern to identify realistic failure mechanisms. Next, macro-blocks that outline the failure mechanism are identified using a novel optimised procedure that includes a heuristic search, which minimises the number of blocks and non-linear interfaces in the subsequent analyses. Subsequently, macro-blocks are modelled as homogeneous material interacting via cohesive-frictional interfaces in a finite element environment where pushover analysis produces force–displacement curves. Validation against various structural benchmarks with regular and irregular masonry patterns and different loading configurations demonstrates the method’s accuracy and competitiveness compared to micro-modelling approaches. Results show up to a 90% reduction in computational time and the number of blocks, with a maximum difference of about 5% in numerical prediction of force capacity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信