Reactive transport and sorption behavior of pollutants in presence of redox-sensitive nano Fe0 impregnated graphene: Advancing towards continuous water filtration
Jai Kishan Rajak , Nitin Khandelwal , Zahid Ahmad Ganie , Dieter Schild , Gopala Krishna Darbha
{"title":"Reactive transport and sorption behavior of pollutants in presence of redox-sensitive nano Fe0 impregnated graphene: Advancing towards continuous water filtration","authors":"Jai Kishan Rajak , Nitin Khandelwal , Zahid Ahmad Ganie , Dieter Schild , Gopala Krishna Darbha","doi":"10.1016/j.enmm.2025.101053","DOIUrl":null,"url":null,"abstract":"<div><div>Fe<sup>0</sup> impregnated graphene has shown promising candidature for removing both organic and inorganic contaminants from aqueous solutions. The current study investigates and fills some of the missing gaps in their large-scale environmental applicability, including- contaminants removal from complex water matrices, simultaneous separation of multiple contaminants, and continuous water filtration possibilities. Both metals and dyes were chosen of varying ionic behavior to broaden the scope of the work.</div><div>One-step graphene oxide (GO) delamination and iron reduction were performed to prepare Fe<sup>0</sup> impregnated graphene (GOI) composite. Results have shown growth of smaller spherical Fe<sup>0</sup> nanoparticles (< 50 nm) on graphene with good dispersion and preserved redox state. XPS analysis of reaction precipitate confirmed that GOI could reduce CrO<sub>4</sub><sup>2-</sup> to less toxic Cr(III) through reductive sorption. Removal capacities in batch mode were Ni (30.5 mg/g) < Cr (49.8 mg/g) < Cd (93.7 mg/g) < As (143.6 mg/g) in mono-metallic system. In a multi-metallic system, efficient total metal removal capacity (>340 mg/g) and continuous filtration efficiency (85 mg/g) was observed. GOI composite has also shown efficient removal and continuous separation of cationic methylene blue (81.3 mg/g), anionic methyl orange (79.7 mg/g), and zwitterionic rhodamine-B (31.7 mg/g). Electrostatic attraction on heterogeneous GOI surface, redox transformation, complexation, and co-precipitation with generated iron-oxy-hydroxide were major contaminant removal mechanisms. Results conclude a good potential of GOI composite in the separation of multiple pollutants from environmental matrices and continuous filtration of contaminated waters.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101053"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Fe0 impregnated graphene has shown promising candidature for removing both organic and inorganic contaminants from aqueous solutions. The current study investigates and fills some of the missing gaps in their large-scale environmental applicability, including- contaminants removal from complex water matrices, simultaneous separation of multiple contaminants, and continuous water filtration possibilities. Both metals and dyes were chosen of varying ionic behavior to broaden the scope of the work.
One-step graphene oxide (GO) delamination and iron reduction were performed to prepare Fe0 impregnated graphene (GOI) composite. Results have shown growth of smaller spherical Fe0 nanoparticles (< 50 nm) on graphene with good dispersion and preserved redox state. XPS analysis of reaction precipitate confirmed that GOI could reduce CrO42- to less toxic Cr(III) through reductive sorption. Removal capacities in batch mode were Ni (30.5 mg/g) < Cr (49.8 mg/g) < Cd (93.7 mg/g) < As (143.6 mg/g) in mono-metallic system. In a multi-metallic system, efficient total metal removal capacity (>340 mg/g) and continuous filtration efficiency (85 mg/g) was observed. GOI composite has also shown efficient removal and continuous separation of cationic methylene blue (81.3 mg/g), anionic methyl orange (79.7 mg/g), and zwitterionic rhodamine-B (31.7 mg/g). Electrostatic attraction on heterogeneous GOI surface, redox transformation, complexation, and co-precipitation with generated iron-oxy-hydroxide were major contaminant removal mechanisms. Results conclude a good potential of GOI composite in the separation of multiple pollutants from environmental matrices and continuous filtration of contaminated waters.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation