Generating realistic DEM shape using improved spherical harmonic reconstruction considering form, roundness, and roughness

IF 4.5 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Songling Han , Changming Wang , Xiaoyang Liu , Mingmin Zhang
{"title":"Generating realistic DEM shape using improved spherical harmonic reconstruction considering form, roundness, and roughness","authors":"Songling Han ,&nbsp;Changming Wang ,&nbsp;Xiaoyang Liu ,&nbsp;Mingmin Zhang","doi":"10.1016/j.powtec.2025.120755","DOIUrl":null,"url":null,"abstract":"<div><div>The shape of particles significantly influences their mechanical properties, making accurate shape modeling crucial in numerical simulations. This paper proposes a framework for generating particles by applying improved spherical harmonic reconstructions to convex hull surfaces. The framework integrates mesh refinement techniques to enhance mesh resolution, enabling the generation of finer surface details than 3D laser scanning. Three parameters are introduced: <span><math><mo>∆</mo><msub><mi>K</mi><mn>1</mn></msub></math></span>, which controls roundness; <span><math><mo>∆</mo><msub><mi>K</mi><mn>2</mn></msub></math></span>, which governs roughness; and <span><math><msub><mi>R</mi><mi>d</mi></msub></math></span>, which represents the boundary between roundness and roughness in spherical harmonic reconstructions. Introducing these parameters not only allows independent control over the three levels of shape (form, roundness, and roughness) but also enhances the flexibility of the method, enabling the generation of various particle shapes. Granular assemblies with varying roundness and roughness distributions are generated and applied in discrete element method (DEM) simulations of triaxial shear. The results show that roundness is negatively correlated with the peak friction angle, while roughness is positively correlated. The proposed method enhances the ability to generate complex particle shapes, offering a practical tool for modeling and simulating granular materials.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"455 ","pages":"Article 120755"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591025001500","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The shape of particles significantly influences their mechanical properties, making accurate shape modeling crucial in numerical simulations. This paper proposes a framework for generating particles by applying improved spherical harmonic reconstructions to convex hull surfaces. The framework integrates mesh refinement techniques to enhance mesh resolution, enabling the generation of finer surface details than 3D laser scanning. Three parameters are introduced: K1, which controls roundness; K2, which governs roughness; and Rd, which represents the boundary between roundness and roughness in spherical harmonic reconstructions. Introducing these parameters not only allows independent control over the three levels of shape (form, roundness, and roughness) but also enhances the flexibility of the method, enabling the generation of various particle shapes. Granular assemblies with varying roundness and roughness distributions are generated and applied in discrete element method (DEM) simulations of triaxial shear. The results show that roundness is negatively correlated with the peak friction angle, while roughness is positively correlated. The proposed method enhances the ability to generate complex particle shapes, offering a practical tool for modeling and simulating granular materials.

Abstract Image

考虑形状、圆度和粗糙度,利用改进的球谐波重构技术生成逼真的 DEM 形状
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Powder Technology
Powder Technology 工程技术-工程:化工
CiteScore
9.90
自引率
15.40%
发文量
1047
审稿时长
46 days
期刊介绍: Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests: Formation and synthesis of particles by precipitation and other methods. Modification of particles by agglomeration, coating, comminution and attrition. Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces). Packing, failure, flow and permeability of assemblies of particles. Particle-particle interactions and suspension rheology. Handling and processing operations such as slurry flow, fluidization, pneumatic conveying. Interactions between particles and their environment, including delivery of particulate products to the body. Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters. For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信