Formation of the Miocene Weixi Sb-polymetallic mineralization in the Sanjiang Region, SW China: Insights from fluid inclusions, S-He-Ar isotopes, and zircon U-Pb geochronology

IF 3.2 2区 地球科学 Q1 GEOLOGY
Yue-Fu Liu , Hua-Wen Qi , Wen-Jie Lin , Lin-Kun Qi
{"title":"Formation of the Miocene Weixi Sb-polymetallic mineralization in the Sanjiang Region, SW China: Insights from fluid inclusions, S-He-Ar isotopes, and zircon U-Pb geochronology","authors":"Yue-Fu Liu ,&nbsp;Hua-Wen Qi ,&nbsp;Wen-Jie Lin ,&nbsp;Lin-Kun Qi","doi":"10.1016/j.oregeorev.2025.106486","DOIUrl":null,"url":null,"abstract":"<div><div>The Weixi Sb-polymetallic orefield (&gt;0.2 Mt Sb) in the Sanjiang metallogenic belt (northwestern Yunnan, SW China), represents a distinct type of Sb-polymetallic mineralization. Here, we examine the ore-fluid properties, source, and metallogenic process by analyzing the fluid inclusions, S-He-Ar isotopes, and zircon U-Pb age of three representative deposits (Shangnuluo, Baiji, and Hagudi) in the orefield. Early pyrite-molybdenite mineralizing fluids in the Baiji deposit contain A-type (liquid H<sub>2</sub>O), B-type (gaseous CO<sub>2</sub>), C-type (H<sub>2</sub>O-CO<sub>2</sub>), and D-type (solid-bearing) inclusions, showing a CO<sub>2</sub>-rich, high-salinity (30.6–36 wt% NaCleqv.) fluid at medium–high temperatures (177–442°C), with metal precipitation primarily driven by fluid boiling. In the late sphalerite-galena-zinckenite-stibnite-calcite-quartz stage (Baiji), A-, B-, and C-type inclusions indicate lower temperatures (186–276.6°C) and salinity (0.35–12.4 wt% NaCleqv.), where metal deposition is controlled by fluid mixing. The Hagudi ore fluids are of medium–low temperature (150–368°C) and salinity (3.2–21.2 wt% NaCleqv.), contain primarily A-type (with some B-type) inclusions, with cooling and mixing being the main ore-forming mechanism. The Shangnuluo ore fluids are of medium temperature and low salinity, contain mainly A-, B-, and C-type inclusions (NaCl-H<sub>2</sub>O-CO<sub>2</sub> fluid system), with immiscibility driving the metal precipitation. These fluid characteristics resemble typical orogenic or magmatic-hydrothermal ore fluids rather than basin-type ore fluids. He-Ar isotopes suggest a primarily crustal fluid origin with minimal mantle contribution. In-situ sulfur isotopes (Shangnuluo: −13.04 to −2.90 ‰; Baiji: −1.60 to 6.65 ‰; Hagudi: −2.48 to − 1.54 ‰) imply a magmatic and Permian formation source at Shangnuluo, magmatic and Jurassic formation source at Baiji, and a primarily magmatic source at Hagudi. Zircon U-Pb dating places the formation of ore-hosting quartz porphyry at Hagudi in the Late Permian (252.7 ± 2.4 Ma). The quartz porphyry was formed before the Miocene mineralization event (∼13 Ma) and potentially provided ore-hosting space for the Miocene mineralization.</div><div>Integrating our new data with previous studies on regional tectonics and magmatism, we speculate that the Weixi Sb-polymetallic mineralization is closely linked to concealed Miocene crustal magmatism. Ore-forming fluids migrated along faults into various stratigraphic levels, and metal precipitation was triggered by fluid immiscibility, cooling, and dilution by formation or meteoric water.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"178 ","pages":"Article 106486"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore Geology Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169136825000460","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Weixi Sb-polymetallic orefield (>0.2 Mt Sb) in the Sanjiang metallogenic belt (northwestern Yunnan, SW China), represents a distinct type of Sb-polymetallic mineralization. Here, we examine the ore-fluid properties, source, and metallogenic process by analyzing the fluid inclusions, S-He-Ar isotopes, and zircon U-Pb age of three representative deposits (Shangnuluo, Baiji, and Hagudi) in the orefield. Early pyrite-molybdenite mineralizing fluids in the Baiji deposit contain A-type (liquid H2O), B-type (gaseous CO2), C-type (H2O-CO2), and D-type (solid-bearing) inclusions, showing a CO2-rich, high-salinity (30.6–36 wt% NaCleqv.) fluid at medium–high temperatures (177–442°C), with metal precipitation primarily driven by fluid boiling. In the late sphalerite-galena-zinckenite-stibnite-calcite-quartz stage (Baiji), A-, B-, and C-type inclusions indicate lower temperatures (186–276.6°C) and salinity (0.35–12.4 wt% NaCleqv.), where metal deposition is controlled by fluid mixing. The Hagudi ore fluids are of medium–low temperature (150–368°C) and salinity (3.2–21.2 wt% NaCleqv.), contain primarily A-type (with some B-type) inclusions, with cooling and mixing being the main ore-forming mechanism. The Shangnuluo ore fluids are of medium temperature and low salinity, contain mainly A-, B-, and C-type inclusions (NaCl-H2O-CO2 fluid system), with immiscibility driving the metal precipitation. These fluid characteristics resemble typical orogenic or magmatic-hydrothermal ore fluids rather than basin-type ore fluids. He-Ar isotopes suggest a primarily crustal fluid origin with minimal mantle contribution. In-situ sulfur isotopes (Shangnuluo: −13.04 to −2.90 ‰; Baiji: −1.60 to 6.65 ‰; Hagudi: −2.48 to − 1.54 ‰) imply a magmatic and Permian formation source at Shangnuluo, magmatic and Jurassic formation source at Baiji, and a primarily magmatic source at Hagudi. Zircon U-Pb dating places the formation of ore-hosting quartz porphyry at Hagudi in the Late Permian (252.7 ± 2.4 Ma). The quartz porphyry was formed before the Miocene mineralization event (∼13 Ma) and potentially provided ore-hosting space for the Miocene mineralization.
Integrating our new data with previous studies on regional tectonics and magmatism, we speculate that the Weixi Sb-polymetallic mineralization is closely linked to concealed Miocene crustal magmatism. Ore-forming fluids migrated along faults into various stratigraphic levels, and metal precipitation was triggered by fluid immiscibility, cooling, and dilution by formation or meteoric water.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ore Geology Reviews
Ore Geology Reviews 地学-地质学
CiteScore
6.50
自引率
27.30%
发文量
546
审稿时长
22.9 weeks
期刊介绍: Ore Geology Reviews aims to familiarize all earth scientists with recent advances in a number of interconnected disciplines related to the study of, and search for, ore deposits. The reviews range from brief to longer contributions, but the journal preferentially publishes manuscripts that fill the niche between the commonly shorter journal articles and the comprehensive book coverages, and thus has a special appeal to many authors and readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信