Max360IQ: Blind omnidirectional image quality assessment with multi-axis attention

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jiebin Yan, Ziwen Tan, Yuming Fang, Jiale Rao, Yifan Zuo
{"title":"Max360IQ: Blind omnidirectional image quality assessment with multi-axis attention","authors":"Jiebin Yan,&nbsp;Ziwen Tan,&nbsp;Yuming Fang,&nbsp;Jiale Rao,&nbsp;Yifan Zuo","doi":"10.1016/j.patcog.2025.111429","DOIUrl":null,"url":null,"abstract":"<div><div>Omnidirectional image, also called 360-degree image, is able to capture the entire 360-degree scene, thereby providing more realistic immersive feelings for users than general 2D image and stereoscopic image. Meanwhile, this feature brings great challenges to measuring the perceptual quality of omnidirectional images, which is closely related to users’ quality of experience, especially when the omnidirectional images suffer from non-uniform distortion. In this paper, we propose a novel and effective blind omnidirectional image quality assessment (BOIQA) model with multi-axis attention (Max360IQ), which can proficiently measure not only the quality of uniformly distorted omnidirectional images but also the quality of non-uniformly distorted omnidirectional images. Specifically, the proposed Max360IQ is mainly composed of a backbone with stacked multi-axis attention modules for capturing both global and local spatial interactions of extracted viewports, a multi-scale feature integration (MSFI) module to fuse multi-scale features and a quality regression module with deep semantic guidance for predicting the quality of omnidirectional images. Experimental results demonstrate that the proposed Max360IQ outperforms the state-of-the-art Assessor360 by 3.6% in terms of SRCC on the JUFE database with non-uniform distortion, and gains improvement of 0.4% and 0.8% in terms of SRCC on the OIQA and CVIQ databases, respectively. The source code is available at <span><span>https://github.com/WenJuing/Max360IQ</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"162 ","pages":"Article 111429"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325000895","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Omnidirectional image, also called 360-degree image, is able to capture the entire 360-degree scene, thereby providing more realistic immersive feelings for users than general 2D image and stereoscopic image. Meanwhile, this feature brings great challenges to measuring the perceptual quality of omnidirectional images, which is closely related to users’ quality of experience, especially when the omnidirectional images suffer from non-uniform distortion. In this paper, we propose a novel and effective blind omnidirectional image quality assessment (BOIQA) model with multi-axis attention (Max360IQ), which can proficiently measure not only the quality of uniformly distorted omnidirectional images but also the quality of non-uniformly distorted omnidirectional images. Specifically, the proposed Max360IQ is mainly composed of a backbone with stacked multi-axis attention modules for capturing both global and local spatial interactions of extracted viewports, a multi-scale feature integration (MSFI) module to fuse multi-scale features and a quality regression module with deep semantic guidance for predicting the quality of omnidirectional images. Experimental results demonstrate that the proposed Max360IQ outperforms the state-of-the-art Assessor360 by 3.6% in terms of SRCC on the JUFE database with non-uniform distortion, and gains improvement of 0.4% and 0.8% in terms of SRCC on the OIQA and CVIQ databases, respectively. The source code is available at https://github.com/WenJuing/Max360IQ.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信