Machine learning approaches to identify hydrochemical processes and predict drinking water quality for groundwater environment in a metropolis

IF 4.7 2区 地球科学 Q1 WATER RESOURCES
Zhan Xie , Weiting Liu , Si Chen , Rongwen Yao , Chang Yang , Xingjun Zhang , Junyi Li , Yangshuang Wang , Yunhui Zhang
{"title":"Machine learning approaches to identify hydrochemical processes and predict drinking water quality for groundwater environment in a metropolis","authors":"Zhan Xie ,&nbsp;Weiting Liu ,&nbsp;Si Chen ,&nbsp;Rongwen Yao ,&nbsp;Chang Yang ,&nbsp;Xingjun Zhang ,&nbsp;Junyi Li ,&nbsp;Yangshuang Wang ,&nbsp;Yunhui Zhang","doi":"10.1016/j.ejrh.2025.102227","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>The study area is located in the urban area of Chongqing City, the largest metropolis in southwestern China.</div></div><div><h3>Study focus</h3><div>Various hydrochemical processes and water quality prediction are unknown, hampering the sustainable development of metropolis. In this study, geochemical model, entropy-weighted water quality index (EWQI), and machine learning (ML) methods were applied to explore the hydrochemical processes and predict the groundwater quality for drinking purposes.</div></div><div><h3>New hydrological insights for the region</h3><div>The self-organizing map classifies the groundwater samples into 2 clusters. Cluster 1, predominantly located along ridge areas, exhibited HCO<sub>3</sub>–Ca as the primary hydrochemical facie. Carbonate dissolution, cation exchange processes, and agricultural activities dominated the groundwater chemistry of Cluster 1. HCO<sub>3</sub>–Ca and HCO<sub>3</sub>–Na types were the dominant hydrochemical types of Cluster 2 in valley areas. Silicate weathering, cation exchange processes, and domestic sewage were the driving factors controlling the hydrochemistry of Cluster 2. EWQI results showed that 59.48 %, 31.90 % and 8.62 % of samples were excellent, good and medium for drinking, respectively. Four supervised machine learning methods were conducted to predict drinking water quality. Linear regression demonstrated the best correlation of 0.9999. The findings offer invaluable insights into groundwater suitability and evolution processes in a typical population density area and ensure a secure and sustainable domestic water supply worldwide.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"58 ","pages":"Article 102227"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825000515","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Study region

The study area is located in the urban area of Chongqing City, the largest metropolis in southwestern China.

Study focus

Various hydrochemical processes and water quality prediction are unknown, hampering the sustainable development of metropolis. In this study, geochemical model, entropy-weighted water quality index (EWQI), and machine learning (ML) methods were applied to explore the hydrochemical processes and predict the groundwater quality for drinking purposes.

New hydrological insights for the region

The self-organizing map classifies the groundwater samples into 2 clusters. Cluster 1, predominantly located along ridge areas, exhibited HCO3–Ca as the primary hydrochemical facie. Carbonate dissolution, cation exchange processes, and agricultural activities dominated the groundwater chemistry of Cluster 1. HCO3–Ca and HCO3–Na types were the dominant hydrochemical types of Cluster 2 in valley areas. Silicate weathering, cation exchange processes, and domestic sewage were the driving factors controlling the hydrochemistry of Cluster 2. EWQI results showed that 59.48 %, 31.90 % and 8.62 % of samples were excellent, good and medium for drinking, respectively. Four supervised machine learning methods were conducted to predict drinking water quality. Linear regression demonstrated the best correlation of 0.9999. The findings offer invaluable insights into groundwater suitability and evolution processes in a typical population density area and ensure a secure and sustainable domestic water supply worldwide.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信