Assessing the impacts of extreme precipitation projections on Haihe Basin hydrology using an enhanced SWAT model

IF 4.7 2区 地球科学 Q1 WATER RESOURCES
Lili Tan , Junyu Qi , Gary W. Marek , Xueliang Zhang , Jianing Ge , Danfeng Sun , Baogui Li , Puyu Feng , De Li Liu , Baoguo Li , Raghavan Srinivasan , Yong Chen
{"title":"Assessing the impacts of extreme precipitation projections on Haihe Basin hydrology using an enhanced SWAT model","authors":"Lili Tan ,&nbsp;Junyu Qi ,&nbsp;Gary W. Marek ,&nbsp;Xueliang Zhang ,&nbsp;Jianing Ge ,&nbsp;Danfeng Sun ,&nbsp;Baogui Li ,&nbsp;Puyu Feng ,&nbsp;De Li Liu ,&nbsp;Baoguo Li ,&nbsp;Raghavan Srinivasan ,&nbsp;Yong Chen","doi":"10.1016/j.ejrh.2025.102235","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>Haihe Basin (HB), North China.</div></div><div><h3>Study focus</h3><div>Studying the impact of extreme precipitation on watershed hydrological factors plays a crucial role in water resource management, climate adaptation, and disaster resilience. An improved Soil and Water Assessment Tool (SWAT) was employed to assess the impact of extreme precipitation indices (EPIs) on temporal and spatial variations in hydrological factors in the HB, China. Five EPIs were identified in this study, including R10 (moderate rain), R20 (heavy rain), R50 (torrential rain), R95p (95th percentile of precipitation), and R99p (99th percentile of precipitation).</div></div><div><h3>New hydrological insights for the region</h3><div>The EPIs with the greatest contribution rates to precipitation, water yield, and percolation in the historical period were R20 (32.1 %), R50 (14.3 %), and R20 (29.0 %), respectively, for the entire basin. During the historical period, there were more occurrences of extreme precipitation events in the plain area compared to the mountainous area. In the plain area, rainfall was beneficial for replenishing groundwater when daily precipitation exceeded 50 mm. Over the entire future period (2041–2100), R50 contributed the greatest water yield (18.4 %) and percolation (36.3 %) in the HB. Furthermore, the number of days with rainfall from 20 to 50 mm d<sup>−1</sup> and those exceeding 50 mm d<sup>−1</sup> increased in the future period relative to the historical period. The results of this study provide a reference for understanding the spatiotemporal distribution pattern of extreme precipitation in the HB and for relevant departments to formulate response strategies.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"58 ","pages":"Article 102235"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221458182500059X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Study region

Haihe Basin (HB), North China.

Study focus

Studying the impact of extreme precipitation on watershed hydrological factors plays a crucial role in water resource management, climate adaptation, and disaster resilience. An improved Soil and Water Assessment Tool (SWAT) was employed to assess the impact of extreme precipitation indices (EPIs) on temporal and spatial variations in hydrological factors in the HB, China. Five EPIs were identified in this study, including R10 (moderate rain), R20 (heavy rain), R50 (torrential rain), R95p (95th percentile of precipitation), and R99p (99th percentile of precipitation).

New hydrological insights for the region

The EPIs with the greatest contribution rates to precipitation, water yield, and percolation in the historical period were R20 (32.1 %), R50 (14.3 %), and R20 (29.0 %), respectively, for the entire basin. During the historical period, there were more occurrences of extreme precipitation events in the plain area compared to the mountainous area. In the plain area, rainfall was beneficial for replenishing groundwater when daily precipitation exceeded 50 mm. Over the entire future period (2041–2100), R50 contributed the greatest water yield (18.4 %) and percolation (36.3 %) in the HB. Furthermore, the number of days with rainfall from 20 to 50 mm d−1 and those exceeding 50 mm d−1 increased in the future period relative to the historical period. The results of this study provide a reference for understanding the spatiotemporal distribution pattern of extreme precipitation in the HB and for relevant departments to formulate response strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信