Establishment and improvement of genetic manipulation tools for Fusobacterium nucleatum

Zhiwei Guan , Hailong Wang , Qiang Feng
{"title":"Establishment and improvement of genetic manipulation tools for Fusobacterium nucleatum","authors":"Zhiwei Guan ,&nbsp;Hailong Wang ,&nbsp;Qiang Feng","doi":"10.1016/j.engmic.2025.100192","DOIUrl":null,"url":null,"abstract":"<div><div>An imbalance in oral microbial homeostasis is significantly associated with the onset and progression of several systemic diseases. <em>Fusobacterium nucleatum</em>, a ubiquitous periodontitis-causing bacterium in the oral cavity, is frequently detected in focal sites and contributes to the pathogenesis of many extraoral diseases, including cancers, cardiovascular diseases, and adverse pregnancy outcomes (APOs). <em>F. nucleatum</em> is one of the few oral anaerobes that can be cultured purely <em>in vitro</em> and is a ‘model species’ for studying the impact of oral health on systemic health. The establishment and development of genetic manipulation tools for <em>F. nucleatum</em> and the construction of pathogenic gene-disrupted strains are important strategies for studying the pathogenicity of <em>F. nucleatum</em>. Here, we review the establishment and development of the genetic manipulation systems for <em>F. nucleatum</em> and summarize the characteristics of various genetic manipulation tools, such as suicide plasmid-based systems for gene inactivation, replicable plasmid-based systems controlling gene expression, and transposon-based random mutagenesis systems. Notably, we summarize and analyze their applications in the study of the pathogenic mechanisms of <em>F. nucleatum</em>. We hope to provide reference information and ideas for future research on genetic manipulation tools and the pathogenic mechanisms of <em>F. nucleatum</em> and other <em>Fusobacterium</em> species.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 1","pages":"Article 100192"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370325000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An imbalance in oral microbial homeostasis is significantly associated with the onset and progression of several systemic diseases. Fusobacterium nucleatum, a ubiquitous periodontitis-causing bacterium in the oral cavity, is frequently detected in focal sites and contributes to the pathogenesis of many extraoral diseases, including cancers, cardiovascular diseases, and adverse pregnancy outcomes (APOs). F. nucleatum is one of the few oral anaerobes that can be cultured purely in vitro and is a ‘model species’ for studying the impact of oral health on systemic health. The establishment and development of genetic manipulation tools for F. nucleatum and the construction of pathogenic gene-disrupted strains are important strategies for studying the pathogenicity of F. nucleatum. Here, we review the establishment and development of the genetic manipulation systems for F. nucleatum and summarize the characteristics of various genetic manipulation tools, such as suicide plasmid-based systems for gene inactivation, replicable plasmid-based systems controlling gene expression, and transposon-based random mutagenesis systems. Notably, we summarize and analyze their applications in the study of the pathogenic mechanisms of F. nucleatum. We hope to provide reference information and ideas for future research on genetic manipulation tools and the pathogenic mechanisms of F. nucleatum and other Fusobacterium species.

Abstract Image

核梭杆菌基因操作工具的建立与改进
口腔微生物稳态失衡与几种全身性疾病的发生和进展密切相关。核梭杆菌是口腔中普遍存在的引起牙周炎的细菌,经常在病灶部位检测到,并有助于许多口外疾病的发病机制,包括癌症、心血管疾病和不良妊娠结局(APOs)。具核梭菌是少数可以在体外培养的口腔厌氧菌之一,是研究口腔健康对全身健康影响的“模式物种”。建立和开发核仁梭菌遗传操作工具,构建致病基因破坏菌株是研究核仁梭菌致病性的重要策略。本文综述了核仁梭菌遗传操作系统的建立和发展,并总结了各种遗传操作工具的特点,如基于自杀质粒的基因失活系统、基于可复制质粒的基因表达控制系统和基于转座子的随机诱变系统。值得注意的是,我们总结和分析了它们在研究具核梭菌致病机制中的应用。希望为今后研究具核梭菌和其他梭菌的遗传操作工具和致病机制提供参考信息和思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信