A novel deep learning based digital twin model for mitigating wake effects in wind farms

IF 4.2 Q2 ENERGY & FUELS
Abdollah Kavousi-Fard , Morteza Dabbaghjamanesh , Morteza Sheikh , Tao Jin
{"title":"A novel deep learning based digital twin model for mitigating wake effects in wind farms","authors":"Abdollah Kavousi-Fard ,&nbsp;Morteza Dabbaghjamanesh ,&nbsp;Morteza Sheikh ,&nbsp;Tao Jin","doi":"10.1016/j.ref.2025.100686","DOIUrl":null,"url":null,"abstract":"<div><div>Wind energy plays a significant role in sustainable power generation in power systems such as energy hubs, microgrids, smart grids and smart cities. On the other hand, some challenges such as wake effects in wind farms can lead to reduced efficiency and increased maintenance costs for the wind farms. This paper presents a cutting-edge approach to tackle these challenges through the development of a novel deep learning-based digital twin model. The proposed model integrates advanced deep learning algorithms with digital twin technology to accurately simulate and predict wake effects within wind farms. By leveraging data from various sensors and weather forecasts, the model can dynamically adjust turbine settings and optimize energy production in real-time. Key features of the digital twin include a convolutional neural network (CNN) for spatial analysis of wake patterns, a recurrent neural network (RNN) for temporal modelling of wind behaviour, and a reinforcement learning (RL) framework for autonomous decision-making. Through extensive simulations and validation against field data, the model demonstrates superior performance in mitigating wake effects and improving overall wind farm efficiency. This research contributes to the advancement of renewable energy technologies by providing a robust and scalable solution for optimizing wind farm operations and maximizing energy output.</div></div>","PeriodicalId":29780,"journal":{"name":"Renewable Energy Focus","volume":"53 ","pages":"Article 100686"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy Focus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755008425000080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Wind energy plays a significant role in sustainable power generation in power systems such as energy hubs, microgrids, smart grids and smart cities. On the other hand, some challenges such as wake effects in wind farms can lead to reduced efficiency and increased maintenance costs for the wind farms. This paper presents a cutting-edge approach to tackle these challenges through the development of a novel deep learning-based digital twin model. The proposed model integrates advanced deep learning algorithms with digital twin technology to accurately simulate and predict wake effects within wind farms. By leveraging data from various sensors and weather forecasts, the model can dynamically adjust turbine settings and optimize energy production in real-time. Key features of the digital twin include a convolutional neural network (CNN) for spatial analysis of wake patterns, a recurrent neural network (RNN) for temporal modelling of wind behaviour, and a reinforcement learning (RL) framework for autonomous decision-making. Through extensive simulations and validation against field data, the model demonstrates superior performance in mitigating wake effects and improving overall wind farm efficiency. This research contributes to the advancement of renewable energy technologies by providing a robust and scalable solution for optimizing wind farm operations and maximizing energy output.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy Focus
Renewable Energy Focus Renewable Energy, Sustainability and the Environment
CiteScore
7.10
自引率
8.30%
发文量
0
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信