Shuxi Zhao , Yang Liu , Gianvito Scaringi , Xinpo Li , Siming He , Gang He , Lei Zhu
{"title":"Non-local μ(I) rheology improves landslide deposition modeling in MLS-MPM simulations","authors":"Shuxi Zhao , Yang Liu , Gianvito Scaringi , Xinpo Li , Siming He , Gang He , Lei Zhu","doi":"10.1016/j.enggeo.2025.107963","DOIUrl":null,"url":null,"abstract":"<div><div>Gaining insights into landslide deposits form can help achieve a better understanding of the overall landslide dynamics. Previous studies have focused on understanding global characteristics of the runout process and final deposit, without attempting to comprehend the deposition process and the underlying mechanisms. Here, we employed a combination of flume experiments and numerical simulations based on the material point method (MPM) to investigate the influence of friction on the characteristics of rock avalanche deposits and gain a deeper understanding of the mechanisms involved. MPM simulations have generally relied on simple soil constitutive models, which cannot capture the rate-, pressure-, and size-dependent characteristics of geomaterials. Thus, we adopted a viscoplastic non-local μ(I) rheology model, which has been proven to be able to reproduce depositional characteristics with high accuracy. We identified two stages during deposition, namely a translational stage, primarily influenced by the basal frictional resistance, and a subsequent impact shear stage, governed by the internal frictional resistance.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"348 ","pages":"Article 107963"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225000596","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gaining insights into landslide deposits form can help achieve a better understanding of the overall landslide dynamics. Previous studies have focused on understanding global characteristics of the runout process and final deposit, without attempting to comprehend the deposition process and the underlying mechanisms. Here, we employed a combination of flume experiments and numerical simulations based on the material point method (MPM) to investigate the influence of friction on the characteristics of rock avalanche deposits and gain a deeper understanding of the mechanisms involved. MPM simulations have generally relied on simple soil constitutive models, which cannot capture the rate-, pressure-, and size-dependent characteristics of geomaterials. Thus, we adopted a viscoplastic non-local μ(I) rheology model, which has been proven to be able to reproduce depositional characteristics with high accuracy. We identified two stages during deposition, namely a translational stage, primarily influenced by the basal frictional resistance, and a subsequent impact shear stage, governed by the internal frictional resistance.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.