{"title":"Tail assignment problem with hour-to-cycle ratio constraints","authors":"Çiya Aydoğan , Sinan Gürel","doi":"10.1016/j.jairtraman.2025.102756","DOIUrl":null,"url":null,"abstract":"<div><div>Effective management of hour-to-cycle performance is crucial for any aircraft operating under an operating lease contract. This protects an airline from incurring supplemental rental payments that arise from leasing contract terms. One way of managing accumulated flight hours and flight cycles on aircraft is integrating related performance measures in the tail assignment decisions. This study introduces the tail assignment problem (TAP) considering aircraft’s hour-to-cycle ratio performance. We introduce a novel TAP formulation explicitly incorporating aircraft hour-to-cycle ratio constraints, which are typically overlooked in traditional models. Our numerical analysis demonstrates that overlooking the hour-to-cycle performance of aircraft in tail assignment decisions can result in drastic deviations from target ratios. Therefore, we propose a mathematical model that includes penalty costs for violating the aircraft’s target hour-to-cycle ratios. We propose one McCormick linearization and one second-order conic reformulation for the nonlinear constraints in the model. We perform computational analyses by generating problem instances derived from an actual flight schedule. Computational results show that within a given time limit the model with McCormick linearization solves more instances to optimum than the model with conic reformulation. Also, it achieves an average optimality gap of 1.62% while the average gap is 6.39% for the solutions obtained with the conic formulation.</div></div>","PeriodicalId":14925,"journal":{"name":"Journal of Air Transport Management","volume":"124 ","pages":"Article 102756"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Air Transport Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969699725000183","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Effective management of hour-to-cycle performance is crucial for any aircraft operating under an operating lease contract. This protects an airline from incurring supplemental rental payments that arise from leasing contract terms. One way of managing accumulated flight hours and flight cycles on aircraft is integrating related performance measures in the tail assignment decisions. This study introduces the tail assignment problem (TAP) considering aircraft’s hour-to-cycle ratio performance. We introduce a novel TAP formulation explicitly incorporating aircraft hour-to-cycle ratio constraints, which are typically overlooked in traditional models. Our numerical analysis demonstrates that overlooking the hour-to-cycle performance of aircraft in tail assignment decisions can result in drastic deviations from target ratios. Therefore, we propose a mathematical model that includes penalty costs for violating the aircraft’s target hour-to-cycle ratios. We propose one McCormick linearization and one second-order conic reformulation for the nonlinear constraints in the model. We perform computational analyses by generating problem instances derived from an actual flight schedule. Computational results show that within a given time limit the model with McCormick linearization solves more instances to optimum than the model with conic reformulation. Also, it achieves an average optimality gap of 1.62% while the average gap is 6.39% for the solutions obtained with the conic formulation.
期刊介绍:
The Journal of Air Transport Management (JATM) sets out to address, through high quality research articles and authoritative commentary, the major economic, management and policy issues facing the air transport industry today. It offers practitioners and academics an international and dynamic forum for analysis and discussion of these issues, linking research and practice and stimulating interaction between the two. The refereed papers in the journal cover all the major sectors of the industry (airlines, airports, air traffic management) as well as related areas such as tourism management and logistics. Papers are blind reviewed, normally by two referees, chosen for their specialist knowledge. The journal provides independent, original and rigorous analysis in the areas of: • Policy, regulation and law • Strategy • Operations • Marketing • Economics and finance • Sustainability