Optimization of soil hydraulic parameters within a constrained sampling space

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE
Meijun Li , Wei Shao , Wenjun Yu , Ye Su , Qinghai Song , Yiping Zhang , Hongkai Gao , Yonggen Zhang , Jianzhi Dong
{"title":"Optimization of soil hydraulic parameters within a constrained sampling space","authors":"Meijun Li ,&nbsp;Wei Shao ,&nbsp;Wenjun Yu ,&nbsp;Ye Su ,&nbsp;Qinghai Song ,&nbsp;Yiping Zhang ,&nbsp;Hongkai Gao ,&nbsp;Yonggen Zhang ,&nbsp;Jianzhi Dong","doi":"10.1016/j.geoderma.2025.117210","DOIUrl":null,"url":null,"abstract":"<div><div>The direct optimization of soil hydraulic parameters (SHP) in unconstrained parameter space introduces significant uncertainties in ecohydrological modeling, particularly when addressing the complex model structure of Richards’ equation combined with Penman-Monteith equation. Pedotransfer functions (e.g., the latest version of Rosetta 3), which have been extensively trained using abundant soil hydraulic data, could potentially provide a physical constraint for sampling SHP. This study integrates optimization algorithms (Particle Swarm Optimization, PSO; Markov Chain Monte Carlo, MCMC; Sequential Monte Carlo, SMC; Generalized Likelihood Uncertainty Estimation, GLUE) with two sampling strategies − direct optimization of SHP and indirect optimization of SHP derived from soil particle composition (SPC) using Rosetta 3 − to evaluate their performance in ecohydrological modeling under predefined soil conditions. The results demonstrated that indirect optimization of SHP significantly enhances the accuracy in recovering predefined true parameters and states, and reduces the uncertainty of ecohydrological modeling compared to direct optimization of SHP. Specifically, the mean quartile deviation of biases in soil water content and evaporation were reduced from 0.0347 m<sup>3</sup>/m<sup>3</sup> and 0.0027 m/h to 0.0061 m<sup>3</sup>/m<sup>3</sup> and 0.0010 m/h, respectively. Furthermore, integration of the Rosetta 3 diminished the dimensionality of inverse modeling, thereby significantly enhancing algorithm convergence speed and precision. It is recommended to integrate Rosetta 3 with various optimization algorithms to enhance the accuracy of ecohydrological modeling.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"455 ","pages":"Article 117210"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706125000485","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The direct optimization of soil hydraulic parameters (SHP) in unconstrained parameter space introduces significant uncertainties in ecohydrological modeling, particularly when addressing the complex model structure of Richards’ equation combined with Penman-Monteith equation. Pedotransfer functions (e.g., the latest version of Rosetta 3), which have been extensively trained using abundant soil hydraulic data, could potentially provide a physical constraint for sampling SHP. This study integrates optimization algorithms (Particle Swarm Optimization, PSO; Markov Chain Monte Carlo, MCMC; Sequential Monte Carlo, SMC; Generalized Likelihood Uncertainty Estimation, GLUE) with two sampling strategies − direct optimization of SHP and indirect optimization of SHP derived from soil particle composition (SPC) using Rosetta 3 − to evaluate their performance in ecohydrological modeling under predefined soil conditions. The results demonstrated that indirect optimization of SHP significantly enhances the accuracy in recovering predefined true parameters and states, and reduces the uncertainty of ecohydrological modeling compared to direct optimization of SHP. Specifically, the mean quartile deviation of biases in soil water content and evaporation were reduced from 0.0347 m3/m3 and 0.0027 m/h to 0.0061 m3/m3 and 0.0010 m/h, respectively. Furthermore, integration of the Rosetta 3 diminished the dimensionality of inverse modeling, thereby significantly enhancing algorithm convergence speed and precision. It is recommended to integrate Rosetta 3 with various optimization algorithms to enhance the accuracy of ecohydrological modeling.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信