Andrew Barrick , Alison J. Boardwine , Nhung H.A. Nguyen , Alena Sevcu , Jana Novotna , Tham C. Hoang
{"title":"Acute toxicity of natural and synthetic clothing fibers towards Daphnia magna: Influence of fiber type and morphology","authors":"Andrew Barrick , Alison J. Boardwine , Nhung H.A. Nguyen , Alena Sevcu , Jana Novotna , Tham C. Hoang","doi":"10.1016/j.scitotenv.2025.178751","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental consequences of plastic pollution have come under scrutiny over the past 20 years as stewardship of the biosphere has risen in popularity. Microplastic research has focused on fragmented particles from hard plastics with limited research focused on microfibers released from textiles, which constitute a significant portion of microplastics in aquatic environments. The present study investigated hazards associated with two natural microfibers (cotton and silk) and four synthetic microfibers (acrylonitrile, Kevlar, nylon, and polyester) towards <em>Daphnia magna</em>. Results demonstrated that toxicity is dependent on the polymer type and morphology. Natural microfibers had no significant effects on <em>D. magna</em> whereas nylon microfibers were acutely toxic. While the total number of microfibers in exposure chambers contributed to microfiber ingestion and toxicity, suspended microfibers were weakly correlated to microfiber ingestion and toxicity. Microfibers with smoother surfaces were more toxic than microfibers that were frayed. Toxicity was more strongly related to microfiber ingestion than exposure concentration, suggesting that microfiber uptake is an important measurement endpoint for characterizing effects. Research with longer exposure times and emphasis on endpoints other than survival, such as uptake and retention of microfibers, feeding rates, growth and development, and reproduction are needed to understand the ecotoxicity of microfibers.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"967 ","pages":"Article 178751"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725003857","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental consequences of plastic pollution have come under scrutiny over the past 20 years as stewardship of the biosphere has risen in popularity. Microplastic research has focused on fragmented particles from hard plastics with limited research focused on microfibers released from textiles, which constitute a significant portion of microplastics in aquatic environments. The present study investigated hazards associated with two natural microfibers (cotton and silk) and four synthetic microfibers (acrylonitrile, Kevlar, nylon, and polyester) towards Daphnia magna. Results demonstrated that toxicity is dependent on the polymer type and morphology. Natural microfibers had no significant effects on D. magna whereas nylon microfibers were acutely toxic. While the total number of microfibers in exposure chambers contributed to microfiber ingestion and toxicity, suspended microfibers were weakly correlated to microfiber ingestion and toxicity. Microfibers with smoother surfaces were more toxic than microfibers that were frayed. Toxicity was more strongly related to microfiber ingestion than exposure concentration, suggesting that microfiber uptake is an important measurement endpoint for characterizing effects. Research with longer exposure times and emphasis on endpoints other than survival, such as uptake and retention of microfibers, feeding rates, growth and development, and reproduction are needed to understand the ecotoxicity of microfibers.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.